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Abstract
The performance of biphase direct-sequence spread-spectrum multiple-
access (SSMA) communication for a general class of fading channels is
investigated. The channels considered are those for which the channel
output consists of a strong stable specular signal plus a faded version of
this signal. Such channels are the result of a transmission medium which
gives rise to a major stable communication path and a number of additional
weaker communication paths. The fading channel is modeled as a general
wide~sense-~stationary uncorrelated-scattering (WSSUS) channel -- a model
which is general enough to exhibit both time and frequency selectivity
and to impose no restrictions on the fading rate. A discussion of the
important parameters of the WSSUS channel is given and two important
classes of WSSUS channels are developed from the general fading channel
model: time-selective fading channels and frequency-selective fading
channels. 1In analyz;ng the performance of direct-sequence SSMA communica-
tions via fading channels two measures of system performance that are
considered are average signal-to-noise ratio at the receiver output and

the average probability of error.
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For the general WSSUS model, results are obtained for the average
signal-to-noise ratio at the receiver output in terms of the spread-
spectrum signature sequences and the covariance function for the fading
process. The results are then specialized to both time-selective and
frequency-selective fading channels. For these two classes of chanrnels,
expressions are obtained for the correlation receiver output signal~-to-
noise ratio in terms of the aperiodic autocorrelation functions of the
signature sequences, the covariance function of the fading process, and
the additive white Gaussian noise spectral density. Numerical evaluations
are presented for specific examples of each of these two types of channels.
The effects of fading on single-user direct-sequence spread-spectrum
and phase-shift-keyed systems is discussed and it is shown that the
spread-spectrum system ylields markedly improved performance over the
phase-shift-keyed system when frequency-selective fadiﬁg channels are
considered. Analytical expressions for the average signal-to-noise ratio
are derived for a SSMA system with random signature sequences, and the use
of these expressions in preliminary system design is discussed.

An expression is derived for the probability of error at the output
of a correlation receiver in terms of expectations over the
faded signal and the multiple-~access interference. Due to analytical
difficulties in evaluating the expectations, however, a moment space
bounding technique is used to derive bounds on the probability of error.
For a single user direct-sequence spread-~spectrum system, exact expressions
for the probability of error are given for both time-selective and
frequency-~selective fading channels. These expressions are compared

with the results obtained from Nth moment space bounds.
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'- CHAPTER 1
INTRODUCTION

1l.1. Spread-Spectrum Multiple-Access Communication Systems

. The advent of the synchronous communication satellite in 1963

B
B

[Spilker, 1977] has made possible the realization of practical multiple-
access communication systems. This realization of multiple-access
communication systems has been achieved principally because of the wide
coverage area, small duration of outage times, and simplicity of antenna
systems afforded by the use of synchronous orbit satellites. To date,
three major types of multiple-access schemes are either being utilized by,
or are being proposed for use with, synchronous satellites: frequency-
division multiple-access, time-division multiple-access, and code-division
' multiple-access ([Pritchard, 1977]. Frequency-division multiple-access
(FDMA) achieves its multiple-access capability through the use of a
separate carrier frequency for each user. Its principal advantages are
[: that it is compatible with existing analog trunk systems and that the
satellite design for a FDMA system is very simple. Time-division multiple-
access (TDMA) achieves its multiple-access capability through the use of
a dedicated time-slot for each user. The principdl advantages of such

a system are that it fits in naturally with digital commnication systems

and that it exhibits increased capacity over FDMA. The third multiple-

, access scheme, code-division multiple-access (CDMA), achieves its

multiple-access capability primarily through coding. Unlike FDMA and

TDMA, however, CDMA requires no precise time or frequency coordination
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among the various users. CDMA techniques have been considered for use in
a wide variety of applications including the NASA tracking and data-relay
system (TDRS) ([Stampfl and Jones, 1970], [Chen and Burnett, 197701,
systems to provide communication to aircraft [Lebow, et. al., 1971], air
traffic control systems [Stiglitz, 1973], systems to control remotely-
piloted vehicles [Malm and Schreder, 1973], and numerous satellite
communication systems (e.g., [Drouilhet and Bernstein, 1969], { Kochevar,
19771, and [Pritchard, 1978]). In fact, a recent survey article of 29
satellite communication systems lists five proposed military satellite

communication systems that will use CDMA [Pritchard, 1978].

The most common form of CDMA is spread-spectrum multiple-access (SSMA)
which is characterized by the use of a unique code sequence assigned to each
user and modulated onto the carrier along with the digital data. By a
spread-spectrum system, we mean any system by which a data signal is
modulated onto a wideband carrier so that the resultant transmitted signal
has a bandwidth which is much larger than the data signal bandwidth
[Scholtz, 1977]. The reason for using SSMA is that, in addition to its
multiple-access capabilities, other desirable qualities are simultaneously
provided including increased immunity from interference and jamming, low
detectability, compatability with other (non-spread-spectrum) systems
operating in the same frequency band, and, with the proper choice of
modulation method, increased immunity from the effects of fading and
multipath distortion ([Cahn, 1973]. The most commonly used forms of SSMA
are: direct sequence SSMA (DS/SSMA), in which a high rate code is used

to phase modulate, together with the data signal, the carrier=-signal;
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frequency-hopped SSMA (FH/SSMA), in which a code sequence is used to
control a frequency-synthesized carrier signal onto which data is
modulated, and hybrid SSMA, which can be a combination of DS/SSMA and
FH/SSMA. By way of example, DS/SSMA will be used in the NASA TDRS system
[Chen and Burnett, 19771, FH/SSMA has been used in the TATS modulation
system for the Lincoln Experimental Satellites [Drouilhet and Bernstein,
1969], and hybrid SSMA will be used in the proposed Joint Tactical
Information Distribution System (JTIDS), a military communication,
navigation, and identification system [Smith, 1978].

For the remainder of this thesis we shall be concerned only with
DS/SSMA, also known in the literature as phase-coded SSMA [Pursley, 1974]
or pseudonoise SSMA [Anderson and Wintz, 1969]. In particular, we shall
be concerned with analysis of the communication performance of an
asynchronous DS/SSMA communication system operating over a fading channel.
Such a system has been previously analyzed elsewhere for communication
over additive white Gaussian noise (AWGN) channels (e.g., [Pursley, 1974],
[Pursley, 19771, [Yao, 1977]). In the next section we shall present a
review of some of the results obtained on the performance of DS/SSMA
communications via AWGN channels.

1.2. DS/SSMA Communications via AWGN Channels

In this section we will initially review the results obtained by
Pursley (1974, 1979) for the communications performance of an asynchronous
DS/SSMA communication system operating over an additive white Gaussian

noise (AWGN) channel. The purpose of this review is threefold: to review




the principles of operation of a DS/SSMA communication system, to
introduce notation that will be useful in the analysis of DS/SSMA
communications via fading channels, and to provide a basis of comparison
of performance for DS/SSMA communications via fading channels.
in this section we shall present a brief review of other published
literature on the performance of DS/SSMA systems over AWGN channels.
We shall consider the DS/SSMA system model shown in Fig. 1 for K
The k-th users' data signal bk(t) is a sequence of unit amplitude,

positive and negative, rectangular pulses of duration T, given by

™ LN AR WA S0 IS e o LA aut gu MELUCRL S04 My
i AR B0

be(0) = T by py (e-4T),

where bk P) € {+1,-1} denotes the k-th user's information sequence and

. G O30 uat aas D)
R

pT(t) =] for 0= t<T and pT(t) = 0 otherwise. Each user is assigned

'-..——-

a code waveform ak(t) which consists of a periodic sequence of unit

amplitude, positive and negative, rectangular pulses of duration Tc-

code waveform for the k-th user may therefore be written as

—————

(0 = T aipy (e-10),

where (a; ') is the discrete periodic signature sequence assigned to the

;
@

k-th user. We assume that each signature sequence has period N = T/Tc

DAt B A uox SLIEA SR s g £

so that there is one code period per data symbol.
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The data signal bk(t) is modulated onto the phase-coded carrier

ck(t), which is given by

ck(t) = A2P ak(t)cos(wct + ek) (1.3)
so that the transmitted signal for the k-th user is

sk(t) = 2P ak(t)bk(t)cos(mct + Gk) . (1.4)

Here P represents the common signal power, mc represents the common center
frequency, and Gk represents the phase of the k-th carrier.
For asynchronous systems, the received signal r(t) at the input to

the receiver in Figure 1l is given by

K
= P - -

r(t) n(t) + kil A2 ak(t 'rk)bk(t Tk)cos(wctkpk) (1_.5)
where wk 4 ek-wch, Tk accounts for the nominal propagation time for the
k-th signal, and n(t) is additive white Gaussian noise with a two-sided
spectral density NO/Z.

If the received signal r(t) is the input to a correlation receiver
matched to si(t), the output Zi at the sample moment t = T is given by
[Pursley, 19777 as

T
z; = IO r(t)ai(t)cos wctdt
K ~
= /P e
JE/2 (b, T+ kil[bk,-le,i(Tk)+bk,0Rk,i(Tk)]CO‘ Py}
k#i

T
+ IO n(t)ai(t)cos wctdt. (1.6)

g
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Since we are concerned with relative phase shifts modulo 27 and
relative time delays modulo T, we have assumed in (1.6), without loss of
generality, that Oi = 0 and Ty T 0. Turthermore, as in [Pursley, 19771,
in writing (1.6), we have neglected the double frequency components. The
two terms Rk,i and ﬁk,i appearing in (1.6) are the continuous~time partial

cross~-correlation functions of the code waveforms, defined by
T
OB fo a, (t-7)a, (t)dt (1.7)
. T
R 1M = IT a, (£-T)a, (£)dt (1.8)
for 0 €T < T. For convenience, we shall denote the continuous-time
partial autocorrelation functious Rk,k and Rk,k by Rk and ﬁk’ respectively.

For values of T in the range 0 < LTC <T=s (L+1)'I.‘c < T, the two cross-

- o~ 3
correlation functions Rk i and Rk ; can be written as
2 -~

Rk’i(T) = Ck,i(L-N)Tc + [Ck’i(L+1-N)-Ck’i(£-N)](T-LTC) (1.9)
ﬁk’i(T) = Ck’i(L)Tc + [ck,i(z+1) - Ck’i(L)](T-ch) (1.10)
where C is the discrete aperiodic cross-correlation function for the

k,i
sequences (aék)) and (a§l)) defined by

N-2=4 ) (1)
(£ a;’a, ), 0< 2 <N-1 (1.11)
; j j+e
=0
N-1+4 .
a(k)a(l) 1-N= 4 <0

Ce, 1 @) = ¢ jEO 3-433 o

\ 0 |¢] = .
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The discrete aperiodic autocorrelation function C will be denoted by Ck’

k,k

Up to this point, we have not indicated any means of measuring the

o

DS/SSMA system performance. Three performance measures that have been
e considered in the past are average signal-to-noise ratio [Pursley, 1974],
!. [Pursley, 1977], worst case performance [Pursley, 1977], and average

- probability of error [Yao, 1977]. For DS/SSMA systems with AWGN channels,

the work of Yao (1977), coupled with the results of Pursley and Sarwate (1977b)

on the efficient computation of signal-to-noise ratio establishes that for

systems of interest, the signal-to-noise ratio is an accurate measure of per-
*i formance which is relatively easy to compute. Using the average signal-to-

. noise ratio (SNR) at the output of the i-th correlation receiver as the
measure of system performance, as in [Pursley, 1977], the phase angles,

L time delays, and data symbols for the k-th signal (k#i) are modeled as

*!! mutually independent random variables which are uniformly distributed on

[0,2r], [0,T], and {+1,-1}, respectively. SNRi is then defined by

0

SNR; & E{Zilbi’o = +1}/(Var{zi|bi’0 = +1})%, (1.12)

e —
.

where, without loss of generality, we have assumed bi 0= +1. From (1.6)
b )

we find that

ey Yv’_TV:"‘-

: E{Zilbi,o =+1} = JBP/2 T (1.13)
e
P and
r
, e (2 K T , o2 .
E Var{Zi\bi’o = +1} = <4T)k§1 IO[Rk’i(T) + k,i(T)]dT + QNOT
{. K#L
p\ X N1 (DT, , )
= <Z¥> L I (R 1 (M) + & {(T) 1T + ¥N T. (1.14)

. 4
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Using (1.9) and (1.10) in (1.14), (1.14) reduces to

/ \
2 /K '
var{z,|b, = +1} = Bz x| +aNrT (1.15)
L 128° \ k=1 7 0
k#i
where
r, . 22u L (0) +py (D) (1.16)
k,i k,i K,i .
and
, N1
b g @ = zj-N C 1 D) G ; D), (1.17)

which is a function of the discrete aperiodic cross-correlation functions
Ck i In [Pursley and Sarwate, 1977b], it was shown that My i(n) can be
? ?

also expressed by

N-1
? Ck(L) Ci(£+n) (1.18)

by (@) = N

2=

which is a function of the discrete aperiodic autocorrelation functions of

the code signature sequences. From (1.12), (1.13), and (1.15), the
average signal-to-noise ratio at the output of the i-th correlation
receiver is found to be
3.-1 X Yo "
SNR, = ((6N7) z L + ]

k=1
k#i

(1.19)

where & L PT is the signal energy per bit.

In addition to the results obtained by Pursley (1974, 1977) indicated

h .
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above, many other results have been obtained on the performance of

33 DS/SSMA communications via AWGN channels, In 1977, Yao (1977) presented
several approaches for evaluating bounds on the average probability of error
(Pe) of a DS/SSMA system using an isomorphism theorem from the theory of

i!! moment spaces. Under a certain set of conditions (K large, N large, and

N > K), Yao verified that Pe could be approximated quite well by the expres-
sion Pe = l-Q(SNRi), where & is the standard Gaussian cumulative distribution
function and SNRi is given by (1.19). Further discussion of Yao's work

may be found in Chapter 4 of this thesis. Also in 1977, Roefs and Pursley

. .xv.vwi—v T .

(1977) evaluated the performance of a DS/SSMA system employing binary
random sequences as signature sequences. They found that the expression

obtained for the average signal-to-noise ratio using random binary signa-

\MAMBAA AL S aure s
REY %

ture sequences,

¢
No k-1
SNR = 3 + N , (1.20)

was a very accurate approximation to SNRi for typical system values of
8/Ny, N, and K and thus is useful in the preliminary design of a DS/SSMA
system. In 1978, the results of [Pursley, 1977] were extended to the
quadriphase DS/SSMA system ease ([Pursley and Garber, 1978)], [Garber,
1978a}). Generally speaking, the results obtained for the quadriphase
DS/SSMA system case are very similar to the biphase DS/SSMA system case
with the exception that a broader class of signature sequences can be
employed by the quadriphase system, offering promise of improved perfor-
mance over AWGN chamnels. Other results that have been obtained on the
performance of DS/SSMA communication systems over AWGN channels deal

primarily with properties of the signature sequence correlation functions

o,
s
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appearing in (1.19) (e.g., see [Roefs, 1977], [Pursley and Sarwate,
1977a], [Pursley and Roefs, 1979}, [Sarwate and Pursley, 1979]). A
tutorial treatment of many of these properties as well as an extensive
bibliography of other papers treating correlation properties of signature

sequences may be found in [Sarwate and Pursley, 1979].

1.3 Direct Sequence Spread Spectrum Communications via Fading Channels

In Section 1.1 we noted that one of the reasons for considering
SSMA as a multiple-access technique was that, with the proper choice of
modulation method, SSMA could be designed to reduce the effects of fading.
In fact, one of the earliest applications of spread spectrum techniques
was in communicating over multipath channels by employing a pseudonoise
modulated frequency-shift keyed (FSK) signal [Price and Green, 1958]. 1In
this section we shall review some of the literature on the performance of
direct sequence spread-spectrum (DS/SS) communications via fading
channels.

One of the earliest studies on the performance of DS/SSMA over
multipath channels was one conducted by Massey and Uhran (1969) for NASA
in 1969. This study was concerned with the design of good sets of
signature sequences which would permit reliable communication over
multipath channels. Essentially this study culminated in the realization
that the odd cross-correlation function of the signature sequences,
defined in [Pursley, 1977], is just as important as the periodic cross-
correlation function for communication over multipath channels or for
asynchronous DS/SSMA communications. Some of these results have also

been reported in [Massey and Uhran, 1975]. Kadar and Schreiber




(1971) considered the effects of a single fading path together with a

single nonfading path on the performance of a DS/SS system employing a
post-detection correlation receiver. Their primary result was an expres-
sion for the signal-to-interference ratio, neglecting thermal noise, at

the output of the post-detection correlation receiver. Cahn (1973) presented
"heuristic' analyses of the effects of direct-plus-specular multipath and
direct-plus-diffuse multipath on the performance of a single-user DS/SS
communication system. Cahn assumed that the fading components of the
received signal were Gaussian and hence could be treated as additiomal

noise in deriving an expression for the probability of error at the output

of a correlation receiver. Jacobs (1974), in a tutorial paper considered

the effects of a direct-plus-specular multipath channel model on a DS/SS
system. Finally, Chang (1979), considered the effects of fading on the .
performance of a digital matched filter in a commmunication system employing
amplitude shift keying (ASK) together with a maximal-length shift register

signature sequence.

Within the past several years, there have appeared several studies
on the effects of fading on DS/SSMA communication systems ([Orr, 1977},
[(Welch, 1978], [Gardner and Orr, 1979]). All of these studies have
concentrated on determining the system signal-~to-noise ratio and/or BN
probability of error for multiple-user DS/SS systems communicating via
a class of channels known as nondispersive, slow-fading channels (see
Chapter 2).

The literature survey given above is intended to indicate the
amount and direction of research that has already been performed on -

DS/SS communications via fading channels. It is also intended to
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indicate some of the deficiencies in the analysis of DS/SSMA communications
'.‘ r? over fading channels. In particular, in all of the analyses presented to
date, little, if any attention has been given to detailed consideration of
.ﬁ*é o the fading channel model being used. While the assumptions of direct-
plus-specular fading or nondispersive fading may be valid for some physical
channels, the channels over which spread-spectrum systems are employed
L ;_f often exhibit radically different channel characteristics. For example,
- because the bandwidth occupied by a DS/SSMA system is typically quite

large, the channel used may exhibit frequency selectivity due to the

5 f presence of a distribution of channel paths over which the signal propa-

gates. Clearly, such a characteristic is not incorporated in either the
direct-plus-specular channel model 6r the nondispersive fading channel
models. Furthermore, the published results noted above have either made
“. [1 certain very specialized assumptions in deriving the results above or
‘;f! . have not used correlation receivers in the DS/SSMA system model. 1In

this thesis we will analyze the performance of the DS/SSMA system model
i t} shown in Figure 1 for a broad class of fading channels. In the next

o section an outline of the thesis research is given.

L . 1.4 OQutline of the Thesis

Chapter 2 describes a comprehensive model of a fading channel
in terms of the statistical properties of the channel with the viewpoint
of characterizing typical fading channels over which DS/SSMA systems
might be used. This characterization includes development of the impor-

Y tant wide-sense-stationary uncorrelated~scattering (WSSUS) channel model

and three subclasses of the WSSUS channel model: the time-selective

[
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fading channel model, the frequency-selective fading channel model, and
the nondispersive fading channel model.

Chapter 3 analyzes the performance of DS/SSMA communications via
fading channels using the average signal-to-noise ratio at the output of
a correlation receiver as the system performance measure. In this analysis,
the DS/SSMA system model of Chapter 1 is used together with the WSSUS fading
channel model of Chapter 2. After analysis of system performance over
doubly-spread channels is cons:dered, performance of the DS/SSMA system
over time-selective and frequency-selective fading channels is analyzed.

A comparison of the performance of single-user phase-shift keyed (PSK) and
DS/SS communication systems over fading channels is given. An analysis of
the performance of a DS/SSMA system using random binary sequences as the
signature sequences is also given.

Chapter 4 analyzes the performance of DS/SSMA communications via
fading channels using probability of error at the output of a correlation
receiver as the system performance measure. Bounds on the probability of
error are obtained using an isomorphism theorem from the theory of moment
spaces. The "Gaussian approximation" for the probability of error,

Pe ~ 1 - Q(SNRi), for DS/SSMA communications via fading channels is dis-
cussed.

In Chapter 5, a summary of the major results of this thesis is given.
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CHAPTER 2

INTRODUCTION TO FADING CHANNELS

2.1l. A Description of Fading

In many analyses of the performance of various types of communication
systems, the communication channel is frequently modeled as a linear time-
invariant system whose transfer function consists of a frequency-independent
magnitude less than unity proportional to the propagation loss and a
delay term proportional to the propagation delay between the channel
modulator and the chamnel demodulator. In addition, the channel is usually
considered to be corrupted by additive stationary Gaussian noise. While
this simple additive white Gaussian noise model is quite accurate for
channels such as deep space communication channels, it is often an overly-
simplified model for high-frequency (HF) long distance communications
achieved via the ionosphere and for microwave communications beyond the
horizon achieved through the use of tropospheric scatter. In the latter
two channels, the received signal has been experimentally shown to undergo
a process known as fading. Fading is a term generally used to describe
any linear channel whose performance is other than that of the ideal
channel described above. A fading channel may exhibit such properties as
selective frequency response, intersymbol interference in digital
communications, spreading of signals in the frequency domain, a time-
varying amplitude response, or any combination of these attributes. The
description of a comprehensive model for a fading channel is given in this
chapter. The remainder of this section will describe fading from a
phenomenological point of view and give special examples of fading

channels.
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In addition to the two examples of fading channels given above, the
HF ionospheric channel and the microwave tropospheric scatter channel,
there exist several other types of channels which exhibit fading. One
example is a very high frequency (VHF) communication link between an
aircraft and a synchronous satellite relay [Bond and Meyer, 1966]. Such
a link has been analyzed and has been shown to exhibit fading due to the
presence of a secondary propagation path between the satellite, the
earth's surface, and the airplane, in addition to the primary propagation
path between the airplane and the satellite. Another example of a
fading channel, this time an artificially created one, is the communica-
tions channel temporarily created by an experiment known as the West
Ford Project {Lebow, et. al., 1964]. 1In this project, 20 Kg of 2 cm
long copper dipoles were injected into an orbit about the earth and
transhorizon communications were conducted at 8GHZ using this orbiting
dipole belt as a scattering mechanism. Fading was predicted prior to
the experiment and confirmed experimentally during the course of the
experiment. A third example of a fading channel is that of line-of-
sight microwave communication links. Although such links are designed
to provide reliable point-to-point communications, occasionally these
links undergo severe fading due to the formation of tropospheric inversion
layers permitting multiple transmission paths between the transmitting
and receiving antennas [Jakes, 1978]. As a result of these multiple
paths, the received signal is a vector sum of several delayed versions
of the transmitted signal, and consequently, depending on the phase

relationship of the received multiple signals, the channel exhibits

P
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fading. Recently, Rummler (1978, 1979) has shown that the fading effects
exhibited by line-of-sight microwave channels could be modeled well by a
three-path channel model. A final example of another channel exhibiting
fading, and one of much current interest, is that of communication at-
millimeter to optical wavelengths in line-of-sight paths through the
non-ionized atmosphere [Strohbehn, 1968]1. In this channel, fading is
present due to random fluctuations in the dielectric constant of the
atmosphere. These four examples serve to demonstrate that fading is not
limited to just the two '"classical" fading channels, the HF ionospheric
and microwave tropospheric scatter channels.

Fading encountered over an HF ionospheric channel, for example, has
been experimentally verified to be of two types -- short duration rapid
'. fading over time spans less than a second and long duration slow fading
over time spans from one second to an hour or longer. The statistics
of the two fading processes are different; hence these two types of fading

must be accounted for in the channel model. It will be shown in Section 2.3

T3

that the two types of fading lead to a ''quasi-wide-sense-stationary"
fading channel model for practical radio channels.

The origin of the fading mechanism for most of the fading channels
mentioned above may be traced to the scattering of an electromagnetic
wave off a random medium. To see how this leads to fading, consider the
following: let a single continuous sine wave be allowed to be scattered
by a random medium. The scattered components may be resolved into
in-phase and quadrature components. The instantaneous values of the two
L types of components may be shown to be uncorrelated. Using the central

limit theorem, as the number of in-phase and quadrature components becomes
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large, the sum of the in-phase components approaches a Gaussian random
process. Similarly, the quadrature components add to form an identically
distributed Gaussian random process. Hence, the in-phase and quadrature
random processes collectively form a zero-mean complex Gaussian random
process [Van Trees, Sec. A.3.1, 1971}. If the random medium is a single
surface and is time-invariant, the received signal, after scattering, can
be shown to have a Rayleigh-distributed amplitude and uniformly distributed
phase, i.e., the signal is undergoing fading. Further discussion of the
modelling of scattering of sinusoids off of random media as a complex
Gaussian random process may be found in [Stein, 1966]; in the following
we will accept the fact that scattering results in a zero-mean complex
Gaussian random process, provided that a "sufficient number" of random
scatterers exists for the particular geometry under consideration.

2.2. Statistical Model of Fading

In this section, we develop the most general model of the fading
channel with the idea in mind that the model should be applicable to the
analysis of DS/SSMA communications over fading channels. In subsequent
sections, the model developed here will be simplified by making appropriate
assumptions.

To begin with, since the signals under consideration are bandpass signals
(i.e., narrow-band signals centered at some frequency wo), comp lex
envelope notation is the most convenient method of describing these
signals. To clarify the notation to be used, several standard properties
([van Trees, 1971], [Stein, 1966], [Stein and Jones, 1967]) of bandpass

signals are given below in complex envelope notation.

A
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The transmitted signal may be represented in complex envelope

notation as

so(t) = Re[uo(t)exp(jZﬂfOt)], (2.1)
where uo(t) is a lowpass signal having a Fourier transform UO(f)’

ug(e) = [ U (Bexp(j2 mfr)ds. (2.2)

By narrowband signals, we mean that if we define the normalized bandwidth

of uo(t:) as
2
Jug e | as
Y 2-3)
luy (0|
then
B << £, (2.4)

Given a linear, time-invariant system with an impulse response h(t)

and a transfer function H(f), where

+32nftd

h(e) = [ H(De £ = Re{2h_(t)exp(j2 £, t)] (2.5)

and H(f) 1s a bandpass function around fo, the output y(t) due to an
input so(t) given by (2.1) is

jw, t
0 ] (2.6)

y(t) = Re[ye(t)e

where

o (t) = [ h_(£-0)u (0)do . (2.7)
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Equations (2.6) and (2.7) illustrate the advantage of using complex
envelope notation for bandpass signals and systems; to evaluate the output
of a bandpass system due to a bandpass signal input, we simply convolve
the impulse response envelope with the input signal envelope, multiply by
exp(erTfOt) and take the real part of the resulting product.

For a linear time-varying bandpass system with impulse response h(t,T)
where

h(t,t) = Re[2he(t,T)exp(j2‘n(t-T))], (2.8) -

the expression corresponding to (2.7) is

- -]

¥o(t) = [ b (c,u)uy(u)du. (2.9)

-0
In (2.8), h(t,T) denotes the output at time t due to an impulse at time T.
Finally, we will need the following algebraic identity: Given two

complex numbers X and Y, then
*
Re[X]JRe[Y] = % Re[XY] + % Re[XY ]. (2.10)

Other properties of complex envelope notation will be developed as needed.
We now proceed to the development of the fading channel model.
Consider the propagation model shown in Figure 2. In the figure, a signal
so(t) given by (2.1) is transmitted and scattered by a moving random
medium which is assumed to be able to be modeled as a layered scatterer,
where each layer has an incremental thickness dr. Associated with each
layer is a propagation delay T which is in addition to the nominal
propagation delay to between the transmitter and the receiver. The

received signal due to scattering from the layer whose incremental

H




e b m s Bane o Al Secdhiaing R dhein A A Jhe g

21

4 Moving S 9"
[ - Scattering q(1‘/2 Seconds/E\ T
;‘ - Medium 7 . X
b~
[ | b+ T
t fo

|

Transmitter Receiver
¥ FP- 6562

Figure 2. Propagation model of a fading channel.
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propagation delay is T is given by
s(t,T) = Re[B (T,t-to)uo(t-to-T) exp(jZTrfo(t-tO-T ))]dr (2.11)

where B(T,t) is the time-varying transmission coefficient for a wave
scattering of a layer whose incremental propagation delay is 1. Several
comments about the form of (2.11) are in order. First, (2.11) assumes that
the thickness dr and its corresponding propagation delay dr may be chosen
small enough such that B(T,t) is constant in its first argument over the
delay dr. This allows the effect of scattering off a single layer to be
modeled as a simple time-varying multiplicative factor as opposed to some
form of superposition of responses. Second, it is important to note that
the received signal s(t,T) is a function of two arguments: the first
denotes time and the second denotes the incremental propagation delay

due to the layer that the transmitted signal is being scattered from.
Hence the received signal is both time-varying due to the fact that the
scattering volume was assumed to be moving, and layer dependent since the
scattering medium was assumed to be able to be modelled as consisting of
differential layers. Third, the time origins of the various terms of
(2.11) should be noted. For a received signal at time t due to scattering

from a layer having a total propagational delay of t, + T associated with

0]
it, the signal would have to be transmitted at time E-ty- T - Thus the
arguments of uo(') and exp(j2m£(*)) are the transmitted time origin.
The second argument of B(T,t-to) refers to the nominal time at which

the received signal was transmitted. Such a time origin is by no means

unique; other authors have made the time origin of the scattering process

Y.
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the actual time origin of the transmitted signal t-to-T [Kailath, 1961]
or the time at which the transmitted wave was scattered off a reasonably
well-defined medium [Van Trees, Ch. 13, 1971]. All such time origins
are essentially equivalent, although one choice of time origin may be
more appealing to the intuition for a given type of scattering medium.
Finally, the statistical nature of B(T,t) must be determined. From our
discussion in Section 2.1, we assume B(T,t) to be a zero-mean complex
Gaussian random process. Inherent in this assumption is the fact that
B(t,t) has a Rayleigh-fading envelope and a uniformly distributed phase,

both of which are time varying due to the presence of a moving random

medium. Hence, the term exp(jZTTfOT) may be absorbed into B(T,t) in (2.11).

The total received signal is a superposition of the responses due
to all the scattered layers:
* > ]
s(t) = J:as(c,w)dw = Re[\[@ﬁ (T,t-to)uo(t-to-'r)exp[jZnfo(t-to)]d‘TJ . (2.12)

Equation (2.12) may also be written in the form

s(t) Re[u(t-to)exp j(ZTTfo(t-to))] (2.13)

where

u(e) = [ B(r,)ug(e-m)dr = [ B(t-T,t)uy(r)dr. (2.14)

Comparing (2.13) and (2.14) with (2.6) and (2.9), it is readily
seen that B(T,t) represents a time-varying equivalent low-pass impulse
response for the general fading channel. Applying an impulse at time «

to (2.14), we obtain
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k]

u (e) = [ B(r,£) 8 (t-a-T)dr = B (t-a,t). (2.15)

That is, B(t-a,t) is the response at time t to an impulse applied at
time «.

Equation (2.12) represents the most general model of a fading channel
that we will discuss here. Before proceeding further, experimental
evidence justifying the use of this model as well as suggesting other
models will be examined briefly. To begin with, if the random medium is
slowly varying with time and can be modeled as consisting of a single
layer, (2.12) reduces to

s(t) = Re[Buo(t-to)exp j211f0(t-t0)] (2.16)

where B is a zero-mean complex Gaussian random variable. The assumptions
necessary for the transition from (2.12) to (2.16) will be examined in
greater detail in Section 2.7. Letting the transmitted signal be a

continuous sine wave at a frequency f£,, (2.16) becomes

0’

s(t) = Re[Bexp j2mE (-t )]. (2.17)

It can be shown that the amplitude of a zero-mean complex Gaussian random
variable is Rayleigh-distributed and the phase uniformly distributed.
Hence (2.17) predicts that the amplitude of the received sine wave is
Rayleigh distributed. Experimental evidence (e.g. [McNicol, 19491},
[Grisdale, et.al., 1957]) for the HF ionospheric channel tends to support
this prediction; at the same time, experimental data [McNicol, 1949] for
many fading channels exhibit a Rician amplitude distribution. Rician

fading is usually considered to be due to a specular compounent in the
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received path, i.e., the presence of a fixed non-random scatterer in the
transmitter-receiver propagation path. In this case (2.12) may be

modified to include a deterministic component in the received signal:

rr:‘rrrra

©
L s(t) = Re[ (Au(t-t,) + ‘L‘s (T, t-t)uy(E-t=T))dT exp(§2 mEy(t-t )] (2.18)
where A is the transmission coefficient associated with the specular
path. The presence of a specular component is necessary for coherent
communications including DS/SSMA communication systems; accordingly
(2.18) will be used in subsequent work.
!' .... The above comments are not meant to suggest that all fading is
Rician or Rayleigh in nature; on the contrary, experimental data for
the HF ionospheric channel and the mm-to-optical wave line-of-sight
Ii channel indicate that the amplitude of the received signal is lognormally
distributed in many instances. Stein (1966) suggests that deviations from
a Rayleigh amplitude distribution for the HF ionospheric channel may be
[: due to an insufficient number of scatterers in a scattering ''layer"
to support the complex Gaussian random process hypothesis stated in

Section 2.1. For the line-of-sight mm-to-optical wave channel,

Li Strohbehn (1968) has shown that the channel may be modeled as consisting
,; . of a very large number of randomly moving slabs. The transmitted signal
| is then modulated by the product of the random transmission coefficients
-‘ A of each of the slabs. Assuming the transmission coefficients to be

independent of each other, the logarithm of the overall channel amplitude

transmission function is the sum of the logarithms of the slab transmission
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functions and, using a central limit theorem argument, is thus normally
distributed. The channel transmission function is then seen to be
lognormally distributed in amplitude. Despite the fact that some channels
may be modelled as exhibiting a lognormal amplitude distribution, for the
remainder of this study, we assume that the fading channels of concern

exhibit predominately Rician fading.

In determining the performance of communication systems over fading
channels, frequent use is made of the second order statistical properties
of theAchannel model. In particular, assuming B(T,t) to be a zero-mean
complex Gaussian process, given uo(t), u(t) given by (2.14) is also a
zero-mean complex Gaussian process which is completely characterized
statistically by its covariance function. What is not commonly realized

however, is that for a bandpass process represented by complex envelope

notation, two covariance functions are needed to completely characterize
the second order properties of the process. To see this, the covariance

of s(t) given by (2.12) is defined in the uvsual manner as

R (£p,t,) = E[s(tl)s(tz)}. (2.19)
Using (2.12) and (2.10) in (2.19), we obtain
R (t),t)) = Re{‘[& [G%E{ﬁ(w-l,tl-co)a (Tz,tz-to)}uo(tl-to-'rl)uo(tz-to-‘rz)
b
*explj nf (t +t2 Zto)]dTldej

+ Rej‘ J‘!sﬁts@l,c £g)B" (Ty, Eymt ) bug (B =E0=T DU (E,=0=T))

. 1
'exp[JZTTfO(tl-tz)]dTldT (2.20)

2
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Note that to evaluate (2.20), two covariance functions are needed,

~

A(Tl,TZ;tl,tz)

e

3E{B (Tl,tl)ﬂ(f?_,tz)} (2.21)

and

A ; & 4l * } 2.22
(Tl’TZ’tl’tz) = ZE B(Tl:tl)B (Tz)tz) . ( . )

A(*) given by (2.22) is defined to be the space-time cross-covariance
function (or simply the covariance function) of the fading process
[Stein, 1966]. In most applications, the narrow-band process B(T,t) is

so constituted that ([Bello, 1963], [Van Trees, 1971])

~

A(Tl,TZ;tl,tz) = 0. _ (2.23)

Examples of processes which do not satisfy (2.23) are given in

({Bello, 19611, {Brown and Crane, 19693}). It is easily seen that (2.23)

is a necessary condition for stationmary bandpass processes. For by representing

the equivalent bandpass impulse response in complex envelope notation as
B(t,t) = Re{p(r,t)exp(j2m £y L)} (2.24)

as in (2.8), the autocorrelation function of B(T,t) is given by

Rp(T1,t15T,,t,) Re[%E{B (Tl,tl)a (Tz,tz)}exp(jZTrfo(tl + )]

+ Re(¥E( (1, £ )8 (r), t) Jexp (12 M E (2] = £))]

Re[A(Tl,TZ;tl,tZ)exp(jZTTfO(t1 + tz))]

+ Re[A(Tl,Tz;tl,tz)exp(jZTTfo(t1 - tz))]. (2.25)
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In order for RB(') to be a function only of the time difference t1 -

‘T

the spectra of the bandpass processes may be found in [Van Trees, Sec

1971]. Grettenberg (1965) has proven that a necessary and sufficient

distributed for all real €. A more direct proof of this latter resul

be found in [Miller, Th. II.4.4, 1974].

! irﬁ‘r ; i“‘”"""

In the sequel, it will be assumed that (2.23) holds for all comp
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this: First, in virtually all the literature on fading channels (e.g.

Ll 4

assumption is made either explicitly or by modelling the equivalent

now be specified whereas the real bandpass process requires only one.

is the fact that even if K(') were non-zero, it is doubtful that a
meaningful measurement of K(') could be made over an actual fading

channel, considering the difficulty in measuring A(s*) [Bello, 1971].

One other covariance function associated with the general fading
channel model given by (2.12) is the frequency-time cross-covariance
[Stein, 1966] defined by

A *
. Sy . .
Rp(£,,8,5t,,t,) = BE{H(E 500 (£,5t,)]
where

H(Es5t) = [ B(Titlexp(~j2mET )dr
-0
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K(°) must vanish in (2.25). A different proof of this result utilizing

condition for (2.23) to hold is that B(r,t) and e °B(r,t) be identically

envelope processes that we shall encounter. There are three reasons for
[Bello, 1963], [Kennedy, 1969], [Stein, 1966}, [Van Trees, 1971]) this
bandpass impulse response as a stationary process. Second, if A(9) is
non-zero, much of the appeal of the representation of bandpass processes

by complex envelope notation is lost since two covariance processes must

Finally, and probably the most important reason from a practical standpoint

t2, —

. A.3.1,

t may

lex

1A}

b}

(2.26)

(2.27)
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is the range Fourier transform of the equivalent low-pass impulse response

B(T,t) for the channel. Using (2.27) in (2.26) we obtain

®
R (£1,5,36,,t,) = J_‘G J;A(TI,TZ;tl,tz)exp(jzn(flTl-fZTz))dwldfz (2.28)
which is recognized to be the double Fourier transform of the space-time
cross-covariance function.

In practice the very general fading channel model de§eloped above
is difficult to use in the performance analysis of communication
systems due to the mathematical complexities involved. Furthermore,
as has been shown by Bello (1963), a simpler model is warranted for
most radio channels. In the next section, we will develop such a

model.

2.3. The WSSUS Fading Channel

We now develop the wide-sense stationary uncorrelated scattering
(WSSUS) fading channel model from the gemeral fading channel model (2.12)
presented in Section (2.2). In this development, we will also define the
wide~sense stationary (WSS) channel and the uncorrelated scattering (US)
channel.

In Section 2.1 we noted that some channels exhibit two types of
fading: long-term fading and short-term fading. Short term fading over
these channels is often such that the short term fading statistics are
approximately stationary over time. Hence, it is convenient to define
a subclass of the general fading channel model known as wide-sense
stationary (WSS) channels. Bello (1963) defines the WSS channel as a

cha~1el whose correlation functions RF(') and A(*) are invariant under

a translation in time. The space-time cross-covariance function given
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by (2.22) satisfies
while the frequency-time cross-covariance function given by (2.26) satisfies

Rp(f£1,8,580,8,)) = Rp(f,,£,5t,-8,) (2.30)

for the WSS channel.

While developing the general fading chammel model in Section 2.2,
we assumed that the scattering medium could be modeled as consisting
of differential layers. A reasonable assumption for many channels is to
assume that the complex Gaussian process B(T,t) is independent of B(T,t)
for T # 0. Note that this is equivalent to assuming that the effect of
scatterers in one differential layer is independent of the effect of the
scatterers in all other differential layers. The space-time cross-

covariance function for such a channel is given by
A(Ty,To3t058)) = A(T56,,8))8(T = T,). (2.31) .

Channels whose space-. me cross-covariance functions satisfy (2.31)
are known as uncorrelated scattering (US) channels [Bello, 1963]. We
remark in passing that the US channel is the wide-sense dual of the WSS
channel using the definitions of duality given by Bello (1964).

Channels which exhibit both WSS channel characteristics and US
cﬁannel characteristics are known as wide-sense stationary @' ~orrelated
scattering (WSSUS) channels [Bello, 1963]. Using (2.29) and | él), the

space-time cross-covariance function for a WSSUS channel is given by
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A(Tl,Tz;tl,tZ) = p(Tl,tl-tz)o(Tl-Tz), (2.32)

where for convenience we have let p(Tl,tl-tz) = A(TI’TZ;tl’CZ) for the
special case of a WSSUS channel. Note that for WSSUS channels, two
assumptions on A(+) are being made: (1) the scattering processes due to
different layers are statistically uncorrelated and (2) the scattering
processes in each layer are wide-sense stationary. Since B(T,t) is a zero-
mean complex Gaussian process which satisfies (2.23), wide-sense stationarit,
of B(T,t) implies strict-sense stationarity of 8(r,t) [Miller, 1974].
Although the above channel models simplify the determination of the
performance of communication systems considerably, they would be of

little value unless these models correspond to actual fading channels.

Fortunately, most radio channels appear to exhibit WSSUS channel properties
([Bello, 19631, {[Stein, 1966]). As noted in Section 2.1, radio channel
fading is often characterized by the superposition of short-term fading

on long-term fading. The short-term fading is usually found to exhibit
stationary statistics while the long~term fading is often highly
non-stationary, depending upon the time interval of interest. Bello (1963)
has introduced the term quasi-wide-sense stationary uncorrelated scattering
(QWSSUS) to describe such a chamnel. As might be expected, a QWSSUS
channel has WSSUS channel characteristics over time intervals on the

order of the duration of short-term fading. Over longer time intervals,
the channel correlation functions no longer exhibit statiomarity.

However, Bello (1963) has noted that the performance of communication

systems over QWSSUS channels may be evaluated by computing system
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performance by modeling the channel as a WSSUS channel, and then averaging
the short-time system performance over the long-term fading statiscics

of the channel. In light of this, for the remainder of this chapter,

we will consider the WSSUS channel model only. An additional reason

for considering this model is that the WSSUS channel is the simplest
nondegenerate channel which exhibits both time- and frequency-selective
r‘ behavior.

2.4. Doubly-Spread Channels

In the previous section, we developed the WSSUS fading channel

model from the general fading channel model. In this section, we
discuss the most general class of WSSUS channels, known either as
doubly-spread channels [Van Trees, 1971] or doubly-dispersive channels
[Kennedy, 1969]. Our goal is to characterize the various parameters
of doubly-spread channels and to introduce notation often used in
conjunction Qith discussions of fading channels.

A word about terminology is first in order. Doubly-spread channels
are so called because they spread the time and frequency waveforms of
a signal transmitted through the channel. Demonstration of this

spreading in both domains must wait until discussion of the singly-spread

degenerate channels which exhibit spreading in only one domain.
. For the doubly-spread channel, the space-time cross-covariance

function of the channel is given by (2.32). The scattering function

SDR(T,f) of the channel is defined to be

-j2mft

Spg (7 6) 4 ‘L e 6 (T,t)dt, (2.33)

where p(t,t) is defined implicitly by (2.32). Note that the scattering

function is the temporal Fourier transform of p(7,t).
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The scattering function provides a means of characterizing the
Doppler spread of the channel, as will be seen shortly. It should be

noted that most of the results to this point and for the rest of this

chapter could just as well have been developed in terms of the channel
scattering function instead of the channel covariance function; see
Kennedy (1969) for such an approach. Because the channel scattering
function and the channel covariance function are Fourier transform pairs,
such parallelism is to be expected.

If the scattering function is concentrated in one region of the
T,f plane, it may be characterized grossly in terms of its moments. We
make the following definitions [Van Trees, 1971]:

The mean delay is defined to be

[--)
1
— T S .,(T,f)drdf. (2.34)
20§ [a DR™*

The mean-square delay spread is defined to be

i

é

ne>

‘-—aﬂ

Spp (T E)ATdE = m . (2.35)

_1._
2
b

The mean Doppler shift is defined to be

Lz [[£ o Drerae. (2.36)

U‘

The mean-square Doppler spread is defined to be

£ S, (T, EaTdE - (2.37)

|~
O“N




In (2.34)-(2.37),

2
20, = j_'i Spg (T»E)dTdf (2.38)

In addition, we will define the duration T and the bandwidth W of a

narrowband bandpass signal given by (2.1) to be

T = Ei {: czluo(c)lzdt (2.39)
and

W= E—i [: leuo(t)lzdf (2.40)
where

E, = j: \uo(c)|2dc (2.41)

and Uo(t) is defined by (2.2).

This definition of the mean-square properties L, B, T, and W is
not unique; Kennedy (1969) defines these properties using Lerner's (1959)
definition of the duration of a signal. The definitions given above are
given only for completeness. For strictly time- or band-limited scattering
functions and/or bandpass signals, simpler definitions will be used for
L, B, T, and W.

An underspread channel is defined to be one for which [Van Trees,
1971]

BL < 1; (2.42)

similarly, an overspread channel is defined to be one for which

{Van Trees, 1971]

BL>1. (2.43)




In reviewing the literature on doubly-spread channels, the terms
correlation (or coherence) time and correlation (or coherence) bandwidth
are often encountered in characterizing the channel [Kennedy, 1969]. The
correlation time of a fading channel is defined to be the time separa-
tion Te beyond which samples of the received complex envelope are
independent. Since the channel scattering process is assumed to be
modeled as a zero-mean complex Gaussian process, given the transmitted
signal, the received signal envelope is also a zero-mean complex
Gaussian process. Thus independence of time samples is implied if the
correlation function of the envelope is zero. Using (2.32) and (2.14),

the correlation between time samples of the received signal envelope is
A * . *
Rpp (t15t,) = 5 Elu(epu’(e)) = LpT(T,:l-cz)uo(cl-w)uo(tz-wdw. (2.44)

By convention, we choose the correlation time for the channel to be the

smallest time separation T = tl-tz for which

RTE(tl,tZ) =0. (2.45)

In a similar fashion, the correlation bandwidth of a fading channel
is defined to be the frequency separation Wc beyond which samples of the
Fourier transform of the received complex envelope are independent.

From the comments above, the received signal envelope is a complex
Gaussian process and it therefore follows that the Fourier transform of
the received envelope is also a complex Gaussian process. Thus
independence of frequency samples is implied if the correlation function
of the Fourier transform of the received envelope is zero. From (2.14),

the Fourier transform of the received envelope is
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U(f) = fj B(7,t)uy(t-T)exp(-j2 nft)drde. (2.46)

Using (2.32), the correlation between frequency samples of the Fourier

transform of the received signal envelope is given by

>

Y
Rep (£15£5) = 5 E{UE)U (£,)]

-]
*
= I&jn(T,cl-c2>u0(t1-x)uo(:z-T)exp[Jzn(fZcz-fltl)]dwdtldtz
(2.47)

By convention, we choose the correlation bandwidth for the channel to be

the smallest frequency separation Wc = fl-f2 for which

RFE(fl’fZ) =0 . (2.48)

In Sections 2.5 and 2.6 simpler expressions are derived for the
correlation functions of the received envelope for time separations and
frequency separations, respectively.

Finally, we note that in the above, the doubly-spread channel
was characterized in terms of its channel covariance function and the
temporal Fourier transform of this quantity, the channel scgttering
function. Alternatively, we could have characterized the channel by the

spatial Fourier transforms of these two quantities:

Ryp (vst) g I pP(T,t)exp(-j2 myT)dr (2.49)
and
PDR(v,f) Q f SDR(T,f)exp(-jZ‘an)dT (2.50)




The quantity RDR(f,v) defined in (2.49) is known as the two-frequency

correlation function {Van Trees, 1971]; the quantity PDR(f,v) in (2.50)

is defined to be the Doppler cross-power spectral density [Bello, 1963].
The usefulness of having the four quantities p(T,t), SDR(T,f), RDR(v,t),
and PDR(v,f) comes in characterizing doubly-spread channels which have
correlation functions which are concentrated in one or more of the
variables time t, Doppler spread f, delay spread T, or delay frequency v.
We shall find in Section 2.6 that the two-frequency correlation function
is useful in parameterizing a subclass of doubly-spread channels.

In this section we have defined and characterized the most general
WSSUS fading channel, the doubly-spread channel. Often fading radio
channels exhibit spreading predominately in either the time or frequency
domains only. In still other cases, the fading effects are such that
they may be modeled by a random variable instead of a random process. In
such cases, it is convenient to define subclasses of doubly-spread channels
having specific characteristics. In the next three sections we will
develop the models for three subclasses of doubly-spread fading channels,
also known as degenerate channels [Van Trees, 1971].

2.5. Time-Selective Fading Channels

In Section 2.2, we developed the general model of a fading channel by
assuming that the scattering medium could be modeled as a randomly moving,
layered volume of scatterers; each layer of which could be modeled as a
complex Gaussian process. In this section we will assume that the
scattering medium can be modeled as a single layer of randomly moving
scatterers. As will be seen, such an assumption leads to the development

of a class of channels known as time-selective fading channels.
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To begin with, assume that a signal so(t) given by (2.1) is
transmi tted through a scattering medium that can be modeled as a single

layer. The received signal is
s(t) = Re[B(t-to)uO(t-to)exp(jZ1Tfo(t-to))] (2.51)

where to is the propagation time between the transmitter and receiver and B (t)
is the time-varying transmission coefficient due to the scattering medium.
From the comments in Section 2.1, we will assume B (t) is a sample function
from a zero-mean complex Gaussian random process. Equation (2.51) may

also be written as

s(t) = Re[u(t-to)exp(jZTTfo(t-to))] (2.52)

where

u(t) = B(t)u0<c>- (2.53)

For the WSSUS channel model, B(t) is a stationary random process.
It is important to note that since B(t) is a complex-valued process it

influences both the amplitude and the phase of the transmitted signal ﬁ)(t)'

Equations (5.51) of (2.52) and (2.53) together with the condition
that B (t) be a stationary process comstitute what is known as the time-
selective fadir-, channel model [Bello and Nelin, 1963]. Other adjectives
often used to describe this channel model include channels dispersive only
in frequency [Kennedy, 1969], frequency-flat fading channels [Bello and
Nelin, 1963], or Doppler-spread channels [Van Trees, 1971]. The basis of
this terminology will become clear as the properties of time-selective

fading channels are discussed.
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Equation (2.51) could just as easily have been derived directly from
the doubly-spread fading channel model by noting that (2.51) is identical
in form to (2.11), except for the argument of B. Hence the general
fading channel model (2.12) reduces to (2.11l) where the range variable
T of B is no longer important. In terms of covariance functions of the
channel, the channel covariance function for the time-selective fading

channel is

p(t,t-s) = p(0,t=-s)d(T). (2.54)

In the following, we will use (2.54) for the channel correlation function
for time-selective fading channels rather than define a new time auto-
correlation function that directly characterizes B(t) in (2.51).

Some comments on the form of (2.53) are in order. First, since uo(t),
the transmitted envelope, is being multiplied by B(t), which is independent
of frequency, the received envelope u(t) in (2.53) is easily seen to
undergo fading that is independent of frequency:; i.e., the various
frequency components of uo(t) fade identically (frequency-flat fading).
Nevertheless, B(t) in (2.53) is a time-varying function and as such,
acts to modulate the transmitted envelope uo(t). This leads to Lpreading
of the Fourier transform of the transmitted envelope in the frequency-
domain; hence, the origin of the term Doppler-~spread fading. Finally,
since B(t) in (2.53) is independent of T, the uncorrelated scattering

condition of WSSUS channels is not really necessary in characterizing

time-selective fading channels.
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Using (2.54) in (2.33), the scattering function for a time-selective

fading channel is

-j2rfte

Spr(T»£) = 8,(0,£)8(7) = MT)L, e p (0, t)dt. (2.55)

The term SD(O,f) in (2.55) is known as the Doppler scattering function
of the channel.

From (2.55) and (2.36), we see that the mean Doppler shift for a
time-selective fading channel is |

m = 5 [ £5,(0,6)df; (2.56)
20 -=

similarly, from (2.55) and (2.37) we see that the mean-square Doppler spread is

1 2 2
B=—=5[ £5,(0,£)df - m (2.57)
20° =
b
where
2 [--]
20, = j.‘_w 5,(0,£)df. (2.58)

The mean-square Doppler spread characterizes the Doppler spread around the
mean Doppler shift due to the time-selective properties of the fading
channel.

Using (2.55) in (2.34) and (2.35), it is readily seen that the mean
delay and mean-square delay spread for a time-selective fading channel

are identically zero:

m = L = 0. (2.59)
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Thus the time-selective fading channel exhibits spreading in frequency
but not in delay and is therefore often called a singly-spread channel.
Another singly-spread channel will be encountered in the next section.

To clarify the relationship between correlation time, the channel
correlation function, and the correlation between time samples of the
received signal envelope for a time-selective fading channel, consider the
following example. Note first that by using (2.54) in (2.44), the
correlation between time samples of the received signal envelope for a

time-selective fading channel is

RTED(tl’tZ) = p(o’tl'tz)“o<t1)“5(t2) . (2.60)

For this example, let the Doppler scattering function for the channel be

of the form
1; -%<f<
SD(O,f) = . (2.61)

0; elsewhere .

oo

The corresponding channel correlation function p (0,At) is therefore

sinmBAt

p(0,At) = B nBAt

The correlation time as defined by (2.45) is given by

T, = % s (2.62)

provided

uo(tl)ug(t1-At) # 0 for 0 < At < % . (2.63)

Thus time samples of the received signal separated by 1/B seconds will

be uncorrelated.
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Suppose, however, that we transmit a pulse of duration T through
the channel where
1

T << 3 c (2.64)

In this case, it is the pulse itself that determines Te and the
correlation time is equal to the duration of the pulse. From (2.60)

and this example, we may conclude that, provided (2.64) holds, time
samples of the received envelope separated by less than the pulse
duration T will be correlated. In Section 2.7 we will see that (2.64)

is a necessary condition for the development of the non-dispersive fading

channel model.

2.6. Frequency-Selective Fading Channels

The second subclass of doubly-spread fading channels that we will
look at are known as frequency-selective fading channels [Bello and Nelin,
1963}. As is the case for time-selective fading channels, frequency-
selective fading channels result from doubly-spread channels by making
different assumptions about characteristics of the scattering medium. For
frequency-selective fading channels, we assume that the scattering medium
may be modeled as a fixed (non-moving) volume consisting of differential
layers. For a transmitted signal so(t) given by (2.1), the received

signal scattered from a single layer is

o o PP - - _ o o e o A a

[ 3ed
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s(t,T) = Re[B(T)uo(t-to-T)exp(jZTrfo(t-to-T))]dT (2.65)

where o is the nominal propagation delay between the transmitter and
receiver, T is the additional delay due to the scattering layer and B(T)
is the transmission coefficient for a wave scattering off a layer whose
propagation delay is T. Note in particular that B(T) is a random variable
that is indexed by the additional delay 7. We will assume B(T) is a
zero-mean complex random variable.

The total received signal is a superposition of all the responses due

to the individual layers:

i

¥ 1
s(t) = Re[‘[cﬁ ('r)uo(t-to-'r)exp(JZnfo(t-to-'r))d - (2.66)
where B(T) is assumed to be zero except for the finite region where
scatters exist. Since B(T) is a zero-mean complex Gaussian random
variable with a Rayleigh distributed amplitude and a uniformly distributed
phase, the factor exp(-janoT) may be absorbed into B(T). In this case

(2.66) becomes

® 1
s(t) = Re{f a(T)uo(t-to-T)exp(jZ1Tfo(t-to))d7g , (2.67)
- J
or equivalently
s(t) = Re[u(t-to)exp(jZTTfo(t-to))] (2.68)
where
u(e) = [ B(Muy(e=n)dr = [ B(t-T)u (T)dr . (2.69)

B EEERt S vS
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Equations (2.67) or (2.68) and (2.69) together with the condition that the
individual scattering layers are uncorrelated constitute the frequency-
selective fading channel model. Observe that we could have derived (2.67)
directly from (2.12) by simply dropping the time dependence of B (7,t).

Thus frequency selective fading channels are properly designated a subclass
of doubly-spread channels. Note that (2.69) describes the input-output

characteristics for a linear time-invariant filter with complex impulse

response B (t). For reasons that will become apparent, frequency-selective

fading channels are also known as time-flat fading channels [Bello and

Nelin, 1963], channels dispersive only in time [Kennedy, 1969], and range -
or delay-spread fading channels [Van Trees,1971].
The channel covariance function for a frequency-selective fading

channel is

g(T) & g(t,0) . (2.70)

R fva‘ S
e Ve .o L.
1

!.n The term g(t) is also known as the range scattering function for a
. frequency-selective fading channel.

The channel scattering function for a frequency-selective fading

b Sl it

® channel may be found by using (2.70) in (2.33):
2 SDR(T,f) = g(T)8(f) . (2.71)
b - Using (2.71), the mean delay for a frequency-selective fading channel is '
253 —
@ o
- _ 1
. m, = —3 [ rg(myar (2.72)
20, .=
b
: while the mean-square delay spread is given by
» B
tj*f
-
fe
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1 o2 2
L===3 [ r%g(mdr - m (2.73)

20 -

b
where

2 [--]

Zcb = Iw g(r)dr. (2.74)

Using (2.71) in (2.36) and (2.37), the mean Doppler shift and the
mean-square Doppler spread for a frequency-selective fading channel are
found to be identically zero.

We will now demonstrate, by way of example, the relationship between the
two-frequency correlation function, the transmitted signal envelope, and the
correlation between frequency samples of the received signal envelope. To
do this we first need to compute the correlation between frequency samples
of the Fourier transform of the received signal envelope when a bandlimited
signal is transmitted. Using (2.70) in (2.47), the frequency éorrelation

function RFE(fl’fZ) becomes
-]
£,£) = [[le)u,(t, -1 ur(t, ~T)exp(j2 W (£, £, -£ £ ))drd dt (2.75)
Rpg(f1055) = JJJeMug (e -y (ey-mexp (321 (£, 8,0y &y 1952 '

Equation (2.75) may be rewritten as
- (- -]
Rpp (£15£,) = Ug(£7)U5(E,) [m g(T)exp(-j2 7T (£;-£)) dr (2.76)

where Uo(f) is the Fourier transform of uo(t) as defined in (2.2). Note

that the quantity
A [--]
Ry (£,0) =J‘ g(T)exp(~j2 mTE£)dT (2.77)
-0

appearing in (2.76) is the two-frequency correlation function RDR(f,t)
for zero time separation as defined by (2.49). Using (2.77), (2.76) may

be written as
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= * - \ .-
RFE(fl,fz) Uo(fl)UO(fz)RR(fl f2,0). (2.78) ‘
Now let g(T) be of the form

L L
- =-< < =
1, 7= T < >

2.
g(T) = (2.79)
0, elsewhere -
Using (2.77), the two-frequency correlation function for the channel
covariance function given by (2.79) is
sinm L(fl- fz)
RR(fl-fz,O) =1L p L(fl'fz) . (2.80)

Assume a signal is transmitted whose envelope function has a Fourier

transform given by

1, - %s £ <
U, (£) =3 (2.81)

\0, elsewhere

INYE>

Using (2.80) and (2.81) in (2.78), it is readily seen that if

W >% (2.82)

then the frequency components of Uo(f) separated by multiples of 1/L Hz
will be uncorrelated. From (2.48), we see that the correlation bandwidth

of the channel for this case is

W =
c

[l Fod

(2.83)
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If, however, instead of condition (2.82) we have the condition

W< g, (2.84)

then using (2.80) and (2.81) in (2.78), we see that samples of the
Fourier transform of the envelope of the received signal are correlated
for all frequencies in the bandwidth of the signal. In Section 2.7 we
will see that (2.84) is a necessary condition for the development of the
non-dispersive fading channel model.

Before leaving this section, we make mention of a comncept often
encountered in the literature on fading channels, which is that of
time-frequency duality ([Bello, 1964], [Van Trees, Sec. 12.3, 1971]).
The reader may have noticed a certain similarity between the equations
characterizing a time-selective fading channel and the equations
characterizing a frequency-selective fading channel. As an example
of this, compare the expressions for the correlation between time
samples of the received signal envelope for a time-selective fading
channel given by (2.60) and the correlation between frequency samples
of the Fourier transform of the received signal envelope for a
frequency-selective fading channel given by (2.78). Except for the fact

that time appears in the arguments of (2.60) while frequency appears in

the arguments of (2.78) and that Fourier transforms of the terms of (2.60)




are used in (2.78), the two expressions are identical in form. To

emphasize this ''duality" concept, (2.69) may be written as
U(f) = H(f)UO(f) (2.85)

where H(f) is the Fourier transform of a sample function of B (T):

=

H(E) = [ B(T)exp(-j2mer)dr . (2.86)

-0

Comparing (2.53) with (2.85), we see that except for the fact that
Fourier transforms are used in (2.85), the defining equations for the
two channel models are identical in form. As was mentioned in Sectiom
2.3, even the conditions of wide-sense stationarity for the time-selective
fading channel model and uncorrelated scattering for the frequency-
selective fading chamnel model are dual concepts. Bello (1969) has
thoroughly discussed the various concepts associated with time-
frequency duality; the reader is urged to consult [Bello, 1969] for more
details. Using Bello's definitions, Van Trees (1971) proves that a
time-selective fading channel is the dual of a frequency-selective
fading channel, The principal advantages of recognizing this duality
appear to be in deriving equivalent circuit models of fading channels
[Bello, 1963], designing optimal receivers for the two types of

channels {Van Trees, 1971], and in evaluating the performance of
communication systems over time-selective and frequency-selective

fading channels ([Bello and Nelin, 1962], [Bello and Nelin, 19631).

i
¥}




2.7. Nondispersive Fading Channels

In the previous two sections, we have discussed two subclasses of
the doubly-spread fading channel model. To derive the channel models
for these subclasses we have assumed either that the scattering medium
is moving but may be modeled as a single layer or that the scattering
medium is fixed but consists of differential layers. In this section
we assume that the scattering medium is both fixed (non-moving) and may
be modeled as a single layer.

For a transmitted narrowband bandpass signal given by (2.1), the
received signal, after passing through a fixed, single layer scattering

medium, is given by
s(t) = Re[Buo(t-to)exp(jZTTfO(t-to))] (2.87)

where to is the propagation time between the transmitter and receiver

and 8 is assumed to be a zero-mean complex Gaussian random variable.

Equation (2.87) constitutes the fading channel model for a nondispersive
fading channel [Kennedy, 1969]. Note that (2.87) could have been derived
directly from the channel model for a doubly-spread fading channel (2.12)
by dropping the time dependency of B(T,t) and by noting that scattering
is due to a single layer. A more precise derivation of the nondispersive
fading channel model from the doubly-spread fading channel model is given

below.
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The channel covariance function for a nondispersive fading channel

is given by
pP(T,0t) =p(0,0)8(T),-® < T < ®,-®» < At < ®, (2.88)

Using (2.88) in (2.33), the scattering function for the nondispersive

fading channel is given by
(T,£) = p(0,0)8(r)8 (£). (2.89)

From (2.89) and (2.34)-(2.37), the mean delay, mean-square delay spread,
mean Doppler shift, and mean-square Doppler shift for a nondispersive
fading channel are all identically zero. The nondispersive fading
channel thus exhibits no spreading in frequency or time; hence the name
nondispersive. Another term often used to describe the nondispersive
fading channel is flat-flat fading channel [Bello and Nelin, 1963].
Since B in (2.87) has a Rayleigh distributed amplitude and a uniformly
distributed phase, the nondispersive fading channel is also known as
simply a Rayleigh fading channel. In this study, however, by a
Rayleigh fading channel we will mean any doubly-spread fading channel
or any of its subclasses which do not contain specular components.

As mentioned above, a nondispersive fading channel is a special
case of a doubly-spread channel. More generally, it is a special
case of both time-selective fading and frequency-selective fading
channels (which ére, in turn, special cases of the doubly-spread
channel). In Section 2.5 we saw that, for a time-selective fading
channel and a signal satisfying (2.64), time samples of the received

envelope would be correlated for the duration of the transmitted envelope.
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In Section 2.6 we saw that, for a frequency-selective fading channel and
a signal satisfying (2.84), frequency samples of the received envelope
would be correlated for all frequencies in the bandwidth of the trans-
mitted signal. Since a nondispersive fading channel exhibits no spreading
in either time or frequency, (2.64) and (2.84) combined must be the
condition for a doubly-spread channel to exhibit nondispersive fading:

1

BL << T - (2.90)

Since the time-bandwidth product for any signal must be greater than

unity (c.f. [Papoulis, Sec. 4-4, 4-5, 1962])
™ >1, (2.91)

(2.91) combined with (2.90) indicates that nondispersive fading will

occur provided
BL << 1. (2.92)

From (2.42), it is seen that nondispersive fading will occur in a doubly-
spread channel provided that the channel is underspread.

Finally we mention a special case of the nondispersive fading
channel known either as the '"slow and flat'" fading channel model
[Nesenbergs, 1967] or the pure fading channel model [Wozencraft and Jacobs,
1965]. For this case, P appearing in (2.87) is assumed to be a real
Rayleigh (or Rician, 1f a specular component is present) distributed
random variable. This channel model will result from the nondispersive
fading channel model if the phase of B may be modeled as a real,
nonrandom variable.

Figure 3 summarizes the fading channel models that we have

considered up to this point.
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CHAPTER 3

AVERAGE SNR ANALYSIS OF DS/SSMA COMMUNICATIONS VIA FADING CHANNELS

One useful measure of performance of a DS/SSMA system is the average
signal-to-noise ratio SNR. 1In this chapter, we analyze the average
signal-to-noise ratio performance of DS/SSMA communications for a general
class of fading channels. In making this analysis we shall use the DS/SSMA
model from Chapter 1 together with the WSSUS fading channel model of
Chapter 2. The results presented represent a generalization of the
performance analysis of [Pursley, 1977] which considered only additive
white Gaussian noise (AWGN) channels.

The type of fading considered in this chapter is Rician or specular-
plus-Rayleigh fading [Stein, p. 372, 1966]. That is, for a single trans-
mitted signal given by (2.1), the received signal (2.18) consists of a
replica of the transmitted signal plus a weaker Rayléigh-faded version of
this signal. This will be the situation whenever the transmission medium
is such that there is a strong stable path and a number of weak paths. The
component of the received signal that is produced by the strong stable path
is called the specular component or the desired signal component; this
component can be coherently demodulated. However, unless restrictions
are imposed on the fading rate, the Rayleigh-fading signal that arises
from the weak paths cannot in general be coherently demodulated [Stein,

pp. 406-407, 1966], and hence we shall treat it as interference. An
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example of a situation in which this type of fading occurs is the example
given in Section 2.1 of communication between an aircraft and a satellite.
In this example there exists a direct communication path between the

aircraft and the satellite in addition to one or more communication paths

due to reflection off the earth.

If the channel exhibits Rayleigh fading rather than Rician fading

(i.e., if there is no strong stable component in the received signal),

then the direct-sequence form of spread-spectrum communication would not
- generally be suitable, since it could not be coherently demodulated unless

the fading is sufficiently slow. This follows from the results of Viterbi

(1965) who showed that for a correlation receiver with a phase reference
having a uniform probability density function, as would be the case for
a nondispersive Rayleigh-fading channel, the probability of error for an
antipodal signaling set is %. For this chapter, it is assumed that the
specular component is of sufficient amplitude that the effects of fading
on the performance of the DS/SSMA synchronization subsystem may be
neglected. The performance of synchronization subsystems in the presence
of fading communication channels has been analyzed elsewhere (e.g., see
[Weber, 1976]).

3.1. DS/SSMA System Performance for Doubly-Spread Fading Chanuels

In this section, we shall develop the results for the average
signal-to-noise ratio at the output of a correlation receiver for
DS/SSMA communications via a doubly-spread channel. In Sections 3.2
and 3.3 we will specialize the results obtained to the singly-spread

time-selective and frequency-selective channels, respectively.

-
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The system model that we will consider is shown in Fig. &4 for K
users. The system model as shown is assumed to be time-asynchromnous,
i.e. there exists no common timing reference among each of the K-users.
In Fig. 4, the fading channel is assumed to be able to be modeled by a
S :‘ linear time-varying filter whose transfer function is, in general,

. nondeterministic., With this one exception, the system model of Fig. 4 is

identical to the system model of Fig. 1 for the AWGN channel.

= For each k (1 = k = K) the k-th user's data signal bk(t) is a
sequence of statistically independent, unit amplitude, positive and

;; negative, rectangular pulses of duration T. The data signal for the k-th
user is therefore given by (l.1). As was the case for the AWGN channel
model, each user is assigned a code waveform ak(t) which consists of a

ii periodic sequence of unit amplitude, positive and negative, rectangular

) pulses of duration Tc' The code waveform for the k-th user is therefore

:; given by (1.2). We assume that each signature sequence has period

[ N = T/Tc so that there is one code period per data symbol.

The data signal bk(t) is modulated onto the phase-coded carrier ck(t),

which is given in complex envelope form by

L c, () = 2P Re[a (t)exp(ju t + 38,)1, (3.1

Ny
s ..

so that the transmitted signal for the k-th user is

PPp—

e

e 4

s, (t) = J2P Re[a, ()b, (t)exp(ju t + j8,)]. (3.2)

In the above expressions, P is the common signal power, 8., is the phase

k

of the k-th carrier, and w is the common carrier frequency.
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In the absence of fading, the received signal at the input to a

receiver is given by
K

r(t) = n(t) + £ s, (t-T.), (3.3)
k=1 © K

where n(t) is the AWGN term and T, accounts for the nominal propagation

k
time for the k-th signal as well as for the time asynchronism between the
k-th transmitter and the other K-1 transmitters in the system.

In the presence of fading, however, the expression for the received
signal at the input to a receiver becomes more complex. From Chapter 2,
for a transmitted signal given by (2.1), the received signal at the output
of a doubly-spread fading channel is given by (2.12) or (2.13) and (2.14).
As noted in the introduction to this chapter, the type of fading being
considéered is specular-plus-Rayleigh fading. Thus (2.18) must be used to
describe the fading process. Finally, in addition to the fading present
in the channel, we will also assume that additive white Gaussian noise is

also present. Thus if xk(t)cos@nct+9k) is the input to the channel from

the k-th transmitter, then the corresponding output yk(t) is given by
¥, (6) = Relu (-7, Jexpljo_(t-1,) + 38,1} + n(t), (3.4)
where n(t) is the AWGN term and
A -}
w8 Sy [ B ox (en)ar + x (). (3.5)

The first term of (3.5) is the faded portion of the received signal and
the second term is the specular component. The non-negative real

parameter Yk is the transmission coefficient for the fading channel as
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seen by the k-th signal; and 5k(T,t) is a zero mean unit~-energy (i.e.,

ci = % in (2.38)) complex Gaussian random process which will be referred
to as the fading process. As pointed out in Section 2.2, Bk(T,t), as it
appears in (3.5), represents the equivalent low-pass time-varying impulse

response for the faded portion of the fading channel. The covariance

function for the fading process in a doubly-spread channel is given by

(2.32):
A ; & yg{ * }
L (T:05t,8) = ¥E[B, (1,008 (9,5)
= pk(T,t-s)é(T -0). (3.6) )
e
As will be seen below (see (3.21)), for practical WSSUS channels, pk(T,t-s)
is a real-valued functiom.
From equations (3.2)-(3.4), it follows that for a Rician doubly-spread
fading channel with AWGN, xk(t) = /2P ak(t)bk(t), so that the received v
signal at the input to a receiver is
K
£(e) = ale) + £ Relug(c - rexp{ilu c + o 1}] (3.7)

where P & Gk - wch. If the received signal r(t) is the input to a

correlation receiver matched to si(t), the corresponding output is

T
z, = Io r(t)Rela, (c - T )exp(ju_t + jo,)lde. (3.8)

Since we are interested in phase angles modulo 2m and time delays modulo T,

we shall (without loss of generality) assume T, < 0 and ei = 0 (and
hence 9, = 0). Therefore, as in [Pursley, 1977], the phase angles P
and ek and the time delay Tk (for k # i) are all measured relative to

the phase and time delay of the i-th signal. From (3.7) and (3.8), it
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follows that, except for double-frequency terms,
T K T jo
Zi = f n(t)ai(t)cos wct dt + L % I Re{uk(t - Tk)ai(t)e k}dt, (3.9)
0 k=1 O
where we have used the identity (2.10). The double frequency terms which
are omitted from (3.9) may be ignored for practical implementations of
SSMA.

As in [Pursley, 1977], the phase angles, time delays, and data
symbols for the k-th signal (k # i) are modeled as mutually independent
random variables which are uniformly distributed on [O0,21], [0,T], and
{+1,-1}, respectively. The average signal-to-noise ratio SNRi at the
output of the i-th correlation receiver is then defined in terms of
probabilistic averages (i.e., expected values) conditioned upon
bi(t) for 0 =< t < T, where, without loss of generality, we may assume
bi(t) = +1 over this interval.

For convenience, the following notation will be introduced. Let

b ((T56) = a (e - Db (e = Ta (0) (3.10)
and

fk,n,i(T’G;t’s) = hk,i(T;t)hn,i(G;s) (3.11)

for 1= k=K, 1€Sn=K, 1<i<K;0=¢t<T,0<s=T; and -=» < 17 < ®,

- < g <®, The function h, ., is denoted by h,, and £, . . is denoted by
i,i i i,i,41

? 2 ’

fi' In terms of this notation, the i-th specular component, the i-th

(complex) faded signal component, the AWGN component, and the complex

interference component are defined by
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T
D, =~%F [ b (t)de
0

T =
Fi = /%P fo J'-& YiBi('r,t)hi(T ;t)drdte
qT
Ni = Jo n(t)ai(t)cos w.t dt
I. =% Z T
; V3 k=1(Yka,i + Iy
k#i
where
st e
~ o ] )
Ik,i = IO {a ﬁk(T,t - Tk)hk,i(Tk + T,t)exp(ka)det
T
T, 8 f h, . (7, ;t)exp(jp, )dt .
k,i k,i* k’ k
0

If we then let Fi = Re{%i} and Ii = Re{ii}, we see from (3.9) that
Z. =N, +D, +F, +1, .
i i i i i

T
Since ENi = EIi = EFi = 0 and EDi = A/%P fo bi(t)dt = TJ%P, then

EZi = Ty%P. Assuming that n(t) has a two-sided spectral density %NO,

the variance of the noise component Zi is

Var Ni = %NOT,

while the conditional variance of the i-th specular signal component,
conditioned upon bi(t) =+] for 0 < t < T, is zero. Since the fading

process has zero mean, the variance of the faded portion of :.ire i-th

signal is given by

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

12)

13)

14)

15)

16)

17)

18)

19)
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| _ 2 _ ~ 12 _ ~2 ~ Fo
Ij Var F, = E[Fi] = E[Re Fi] = %E[Re{Fi]] + %E[FiFi], (3.20)

which follows from an application of (2.10) with x =y = %i’ and from

~k ~ 2
the fact FiFl = ‘Fi‘ is real. The expressions for the two terms in

o a

(3.20) will involve the covariance function Ai(T,c;t,s) given by (3.6) and

the function Ri(T,G;t,s) given by (2.21). 1In particular

-]

T T =
Elf, |2 =) [ [ [ [ A (rost,e)f, (05e,s)drdodtds. (3.21)
00

The expression for E[Re{%i}] is the right-hand side of (3.21) with Ai
replaced by Ki' However as noted in Sectiou 2.2, we will assume that
the WSSUS fading process is such that (2.23) holds so that Efii} =0

and thus

Var F, = gz\%ilz . (3.22)

From (3.21), (3.22), and (3.6), it can be seen that

T T =
P .2
Var Fi =3 Yi jo f {Q pi(T,t-s)fi(T,T;t,s)detds . (3.23)
By a similar analysis of the interference component ii defined by
(3.15)-(3.17) it is clear that since the fading process has zero mean

and the data signals are uncorrelated and have zero mean, then

K
= 3 2 = 2 J
var I, = 3E|I_| %P kEI(Yk Vi ¥ Vis) (3.24)

k#1

b m ™ Bem Am A w o Re e A m mm. e e m ol o o .‘J
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~ A ~ 2 -
= t = 1 2
where vk,i ElIk,il and Vk,i ElIk,i' are given by
T L]
=E | f - .
Vs TES O ey @k Tt T st s) drdeds (3.25)

0 0 -=
s and
. T T
A 1 = .
; Vk,i E J‘O j‘o fk,k’i(Tk,Tk,t,s)dtds . (3.26)

v

REXS

In general, the expression for v in (3.25) cannot be reduced further

k,i

without additional constraints on the covariance function pk(T,t-s) for

;‘ the fading process. The expression Vi,i in (3.26), however, does not -
E- depend on the fading process. Since the assumptions used to derive vk,i

E;f are identical to those used to derive the variance of the k-th interference

ﬁi component for the AWGN channel of Chapter 1, (3.26) can be simplified as v
ﬁﬁ_ in [Pursley, 1977] to give o
- 2

vl TS o (3.27)

F N .
f:: where r, . is the interference parameter given by (1.16).

S k,i

p The signal-to-noise ratio SNRi at the output of the i-th correlation

@ receiver is defined by

p - -
- sNR, 2 (ED,)[Var F, + Var I, + Var N.]'}5 "
i i i i i i

E"' =T .%P (Var F, + Var I, + %N 1‘]'}5 . (3.28) )
@ i i 0 —
y -

Notice that for SNRi defined in this manner, the faded portion of the
i-th signal is considered to be an interference component of Zi (the

correlation receiver cannot make use of this component). —
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.' Several observations about the results obtained up to this point will i
now be made. First, throughout the analysis presented above, nowhere has "

there been made any assumptions about the independence of the fading 3

. processes Bk('r,t) for 1 < k € K, apart from the implicit assumption that A
Bk(T,t) is independent of the random variables bk(t), Dy and T 3
Consequently, the above results are valid for the important cases where ;

R
o~}

(1) all the fading processes are independent and (2) all the fading processes
are identical, i.e., Bk(f,t) = B(r,t) for all k, 1 < k < K. Case (1)

would arise, for example, in the situation where multiple mobile users

< are communicating via the ionosphere, using DS/SSMA communications. For
this situation, it would be expected that each of the transmitted paths
would involve different sets of scatterers and hence, following an

lu argument similar to that used to develop the uncorrelated scattering

channel model of Chapter 2, the K fading processes would be independent.
Case (2), on the other hand, would arise if a satellite is transmitting

lr multiple-user data to a single aircraft using DS/SSMA communications. In

b BT

this case, all of the K users would undergo the same fading resulting in

identical fading processes. Thus the results above are general enough to

- e e s
IR S W s 20 O 2V

i allow both of these fading situations.

Second, from the results above (viz., (3.23), (3.24), (3.25), and

PR

(3.27)), we see that SNRi depends upon the signature sequences through the

functions fi in (3.23) and fk k. i in (3.25) and through the interference s
b H .

parameters r in (3.27). 1In addition, SNRi depends on the channel

k,i

covariance function P 1< k<K, via (3.23) and (3.25).

9
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Finally, throughout the analysis presented above we have used a
correlation receiver structure for the receiver. This is not to imply
that a correlation receiver is the optimum receiver for DS/SSMA communica-
tions via Rician fading channels. 1In fact, even for DS/SSMA communications
via AWGN channels, the correlation receiver is not the optimum receiver.
For while a correlation receiver is optimum for an antipodal signalling
set and an AWGN channel (e.g. see [Viterbi, 1965]), a rate 1l convolutional
decoder using the Viterbi algorithm is optimal for DS/SSMA commnications
via an AWGN channel [Schneider, 1979]. For a nondispersive Rician fading
channel, it has been shown ([Viterbi, 1965], [Turin, 1958]) that a linear
combination of the optimal coherent and optimal noncoherent receiver is
optimum for a single user system. Other schemes have been devised to
provide low bit error rates in the presence of “slowly" fading channels

[Monsen, 1973]. Thus, it is evident that a correlation receiver is not

optimum for DS/SSMA communications via fading channels>(however, in
general the optimal receiver is not known). Nonetheless, the analysis
presented above is valuable in a practical sense, since existing
DS/spread-spectrum receivers do use simple correlation receiver structures
to simplify receiver design and construction [Cahn, 1973]. Therefore in
the analysis that follows we will continue to use correlation receivers
matched to the i-th (1 £ i £ K) user's code waveform.

3.2, DS/SSMA System Performance for Time-Selective Fading Channels

Analysis. In this section, consideration is given to one subclass of
doubly~spread channels known as time-selective fading channels. The
channel covariance function for a time-selective fading channel is given

by (2.54):

Y TR SN S R L . SEPRLI L. W S G YW S T T T Y T

e
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pi(T,t-S) = pi(O,t-S)é(T)- (3.29)

For convenience, pi(O,t-s) is denoted by ri(t-s). It follows from (3.23)
and (3.29) that the variance of the faded portion of the i-th signal is

2 T T
Yy Io J"O r; (t=s)b, (£)b, (s)dtds . (3.30)

(ST Lsv]

Var F, =
1

The expression for the data signal is given by (1.l1). Making a change
of variables, u = t-s, and using (1.1), (3.30) becomes

P 2 T PT 0 u+T
5 Y.[IO J ri(u)dtdu + {T Io ri(u)dtdu]

Var F,
i i
u

T 0
Yi[fo ri(u)(T-u)du + IT ri(u)(T+u)du]

Njo

T

=p yf Jpo r, (@) (T-w)du . (3.31)

In a similar fashion, the variance of the interference component
Ii may be found by using (3.29) in (3.25). Interchanging the order of

integration and expectation in (3.25), we find

T T
Vk,i = IO Io rk(t-s)E{fk’k’i(Tk,Tk;t,s)}dtds, (3.32)

where the expectation is over bk(t) and T Note that given T bk(t-T

k* k’ k)
is a semi-random binary process [Papoulis, 1965] with an autocorrelation

function for T t, and s in [0,T]

k,

1, T. < min(t,s)

k
E{b, (t-7, )b, (s=T )7, } = l1, T, 2 max(t,s)

0, otherwise. (3.33)
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Evaluating the expectation in (3.32) using (3.33), we find that for t and s

in [0,T]
1 min(t,s)
E{fk,k,i(Tk’Tk;t’s)} = a,(t)a, (s) I [IO a (t-7, )ay (s-T, )d7
T ..
+ I ak(t-Tk)ak(s-Tk)di]
max(t,s)
nT+min(0,v)
= ai(t)ai(s) T J ak(u)ak(u-v)du (3.34)
max(Q,v) -

where u = t-Tk, v = t-s and we have used the fact that ak(t) is periodic

with period T. For v positive we find -

=

E{fk’k,i(Tk,Tk;t,S)} = ﬁk(t-s)ai(c)ai(s); t-s > 0, (3.35)

while for v negative we find
. =13 . )
E{fk’k’i(Tk,Tk,t,S)} =2 Rk(lt sI)ai(t)ai(s), t-s > 0, (3.36)

where ﬁk(T) is the continuous~time partial autocorrelation function
defined in Chapter 1. Combining (3.35) and (3.36), the expectation in

(3.32) reduces to
E(E, | (.7 5t,9)) = = R (|e-s])a, (t)a, (s). (3.37) =1
k,k,i T T ® T Rk 1(8)a; -

Using (3.37) in (3.32) together with the change of variables u = t-s,
(3.32) reduces to

T

20 - :
Vk,i =7 Jo rk(u)Rk(u)Ri(u)du. (3.38)
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From (3.24), (3.32), and (3.27), the variance of the interference

component Ii is

T 2
(Yi % f rk(u)Rk(u)Ri(u)du + PT3 r
1 0 12N
k#i

(3.39)

K
= Z
Var Ii - k,i)
Using (3.31) and (3.39) in (3.28), the signal-to-noise ratio at the output
of the i-th correlation receiver for a DS/SSMA system operating over a

time-selective fading channel is
N, yi T
SR, = (33 + = fo r; (u) (T-u)du

b D2y jT r R R @as + 5 £ 1175, (3.40)
L I i o ettt

k#i
where & & PT is the energy per data bit.

Numerical Results. The general result (3.40) is now specralized to channels

having specific channel covariance functionms rk(t) for 1 € k =K.

Throughout the remainder of this section it is assumed that
r () = 0 for le] > AT, (3.41)

where A = (n#B), n is a positive integer less than N, B is in the range
0<P <1, and A is a positive number less than N. The quantity ch is
called the correlation duration for the fading channel. Note that from

(2.45) and (2.60), the correlation duration for the time-selective fading
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channel is equal to the correlation time Te for the channel as defined

in Section 2.4, provided we are using signals satisfying condition (2.63).

For convenience, the following notation is introduced at this point.
Let Ak(z) = ck(z+1) - Ck(l) and nk’i(z) = Ak(z)ci(z). The function
will be denoted by -
From (1.10) and (3.41), (3.40) is seen to imply
Ny Zyi T
sW, = o3+ —5 [ r () (T-w)du
T 0
K n (+8 )T
2.2 5 2
* L[5y, Il wec,w [

k=1 T £=0 LTC
k#i

c 2
Tc rk(u)du

@8 ,)T

c

+Im @) + W] [ T (u-£T )1, (u)du

4T
c

+

(L+B,)T
L7e (u-zTc)zrk(u)du} + L 20 .]}-%

4T on> Kok
C

OTRON)

w, .
i,i

(3.42)

where Bl = 1 for £ < n and Bn = 8. Observe that the evaluation of (3.42)

requires only knowledge of the discrete aperiodic autocorrelation functions

of the K signature sequences as well as knowledge of the channel

covariance function rk(t). In this chapter, we shall consider two types

of channel covariance functions to illustrate the general results.

These

are a triangular covariance function and an exponential covariance function.

By a triangular covariance function, we shall mean a function of the

form

A



e AP

D > ANANSNLAMD MG AAREAL R

69

A(T-v|t]), e} = AT,

2N (e) = ¢ (3.43)

where v = (KTC)-lT. A truncated exponential covariance function is
defined by

el el

le] = AT,
e (e = (3.44)

0, |t > AT,

(2)

It should be noted that 2N (t) is not a valid autocovariance functionm,
but it is an approximation to the valid autocovariance r(t)= B eXP(‘Q|t|),
. (2) _ (2 . , .
o < t<®, It is true that LN (t) = Tie (-t) which is the ouly property
of an autocovariance function that is needed in what fcllows.
For the time-selective fading channel, the unit variance constraint
on the covariance function of the channel fading process results in the

conditions
rél)(O) = AT = 1, réz)(O) -3 =1. (3.45)

Using (3.43) and (3.45) in (3.42), SNRi for a DS/SSMA system over a

time-selective fading channel with a triangular covariance function

is found to be
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3N

K 2v% a si
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' kil[—F zzo{s"ck(z)ci(z)rl &) + 5 M ;W +m (DI, GE)

k#i
3
g K N
£ 351 L 0 1-%
k#i

where FL(C) 4 N-v(E+ch). In an identical fashiom, it can be shown that

SNRi

covariance function r

for a DS/SSMA system over a time-selective fading channel with

éZ) is

2
2y, o\

s = (L (- + L @ -1

No No

2
K 2y n -of
+ = —£L: e-aL{Ck(L)Ci(Z)(I-e Ly
k=1 N°a £=0
k#L

-aBz

+

-af
(e, 1 8 + 7 (DL + 1) me “@@ +8,) + D] - 4(0-e D]

2 2 . OB 2 2 2
—a+o7]-e [(L-'-BL) +;(L+BL)+?]

+

NOYROHTEE:

of -of,

2f‘-[-(od,+ 1) +e y1h

+

Lt + B, +L] + 22 (1-e

K N
1 0 1-%
+=— T r ., +==1 . (3.47)
6N3 k=1 k,i 26
k#i
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In Fig. 5, we have plotted SNR £ min{SNRi} for K = 6, using
equations (3.46) and (3.47), as a function of the correlation duration of
the channel correlation function. In evaluating (3.46) and (3.47) it has been
assumed that yi = YZ for all k, 1< k <6 and é%—) = 10 dB. The correlation

0
duration used in evaluating (3.46) was that value ch satisfying the

equation ré2>(ch) = e-5 (i.e., ach = 5). This correlation duration was
selected numerically to minimize the effect of ignoring the tail of an

2
exponential correlation function (see (3.41) above). Thus ré )

is a good
model for exponential correlation. The sequences used to evaluate (3.46)

and (3.47) consisted of 6 maximal-length shift register sequences (m~sequences)
of period 127 which collectively form a maximal-connected set [Gold and
Kopitzke, 1965]. The shift-register loading selected for each m-sequence

was the least-sidelobe energy/auto-optimal (LSE/A0) phase for that

particular m-sequence [Pursley and Roefs, 1979]. Further details on the

actual loadings used may be found in the first six entries of Fig. B.l of

[Pursley and Roefs, 1979]. 1In evaluating (3.46) and (3.47) we have used

. N
only values of correlation duration satisfying A = 7, The reason for

20
N
considering this limited range of correlation duration is that for A > E s
the effects of adjacent bits must be taken into account in the performance

L

analysis of time-selective fading channels (note that 2N (t) and réz)(t)

are double-sided functions (see (3.43) and (3.44)).
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Note in Fig. 5 that as the correlation duration increases, the DS/SSMA

II system performance is degraded significantly. An explanation for this
degradation is as follows: as the correlation duration of either rél)(t)
(2)

!- or r, (t) increases, the time-selective fading channel model reduces to the

» nondispersive fading channel model (see (2.64)) of Section 2.7, i.e., the fading
portion of the transmitted signal is being multiplied by a complex random
variable as opposed to being multiplied by a time-varylng random process. Since
the receiver structure being used is a correlation receiver, the effects of the
smoothing by the integrator in the correlation receiver on the diffuse

portion of the received signals is reduced as the channel correlation

duration increases. Heuristically speaking, if the fading process is a
zero-mean, stationary ergodic process so that time averages and probabilistic
averages (expectations) may be interchanged, then for small values of correla-

I! tion duration, the diffuse portion of the received signal is averaged over the

bit duration by the receiver integrator so that its contribution to Zi is

integrator is integrating over a time-independent random variable, so that the b

; essentially zero. For larger values of correlation duration, the receiver
3

[ contribution to Zi of the diffuse portion of the received signals becomes
b

significant. As a result, there is a corresponding decrease in SNRi. The

oy
L4

fact that a DS/SSMA communication system performs better over a time-selective

fading channel with an exponential channel correlation function than one with a
triangular channel correlation function may be explained by examining (3.40). ;

r . Since for a given correlation duration, the tail of an exponential channel

T Y
.
L L.

e

e
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correlation function falls off faster than that of a triane.lar channel
correlation function, using (3.45) we see from (3.40) that for a given
value of XTC, the contribution to Zi of the diffuse portion of the
received signal is smaller for the exponential channel correlation
function.

Figure 6 illustrates the dependence of SNR on the cransmission
coefficient ¥ for a time-selective fading channel with a triangular
channel correlation function. The same signature sequences as described
above are used. As might be expected from (3.46), SNR is degraded in
proportion to the intensity of the fading process. From Figs. 5 and 6,
we may ascertain that for a given minimum SNR at the output of a
correlation receiver, there exists an admissible range of Yy and XTC for
which DS/SSMA communications is possible. Suppose, for example, we use
the LSE/AO m-sequences described above for DS/SSMA communications over a
time-selective fading channel with a triangular channel correlation
function. A desired minimum SNR of 10 dB is possible provided YZ < 0.2
and the correlation duration of the channel is less than 20 Tc'

If a receiver SNR higher than that obtainable from the fading channel
for a given G/NO is required, one would expect that by increasing G/No,
the desired performancg could be obtained. That this approach may be
fruitless is illustrated by Fig. 7 in which SNR is shown as a function

of 8/N_, for a time-selective fading channel for three values of Y2. In

0

Fig. 7, the correlation duration is 10 Tc and the set of signature
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a e

sequences is the same as used for Fig. 1. The observed leveling-off
effect of the SNR vs. G/N0 curve may be expected for any communication
system in which the expression for Var Zi contains a sufficiently

large interference component whose power is directly proportional to the

o~ )

transmitted signal power (see (3.31l) and (3.39)). Hence, this effect will
occur for values of K and N in the range of interest; even for SSMA
communication via an AWGN channel.

In the three figures immediately above we have chosen to use a
maximal-connected set of m-sequences with LSE/AQO phases as the signature

- sequences without giving any justification for this choice of signature

& -
o

D sequences. Some justification for this choice will now be given. First,

we have used a maximal-connected set of m-sequences because such a choice

P
-

{' ii yields the largest possible set of m-sequences of period N for which any

5 - two sequences in the set have a preferred three-valued crosscorrelation

| function [Gold and Kopitzke, 1965]. Hence, by using such a set we

!: automatically are using a set whose sequences have bounded pairwise
periodic crosscorrelation values, a desirable feature for synchronization

- f% purposes in DS/SSMA systems and for communication in synchronous DS/SSMA

'i ‘ systems. Second, we have used the LSE/AO phases for the individual

m-sequences, primarily as a sieve over the phases of the m~sequences, but

secondarily for the reason that such a choice offers promise for good per-

formance, at least over AWGN channels [Golay, 1972]. From [Pursley and Sarwate,
1977b}, we note that the interference parameter LW is bounded by
b
4 2
¢ w? - 6{s(a®ys@t)Hy¥ < feq < an? + 6fs (a®ys at)y3® (3.48)
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where S(u) is the sidelobe energy of sequence u defined by
N-1

S(u) = T

ci(z). (3.49)
=1

Hence by bounding the sidelobe energy of each of the signature sequences
through the use of LSE/AQ phases, we are bounding the value of rk,i;
thereby bounding the performance of a DS/SSMA system over an AWGN
channel (see Eq. (1.19)). 1In fact, the choice of LSE/AQ phases
is not necessarily critical for fading channels. For example, if
AOQ/ISE phases [Pursley and Roefs, 1979] were used, the results obtained
for Fig. 5 would differ from the results obtained using AO/LSE phases oz
by less than 0.004 dB. 1In Section 3.5 we will see that maximal-
connected sets of m-sequences with LSE/AQ phases perform very much like
"typical" sequences. Thus it is expected that the numerical results s
presented above in Figs. 5-7 are typical results that would be obtained
using any reasonable set of 6 signature sequences of length 127. However
as will be shown later, bad choices of signature sequences will give far
worse performance.
3.3. DS/SSMA System Performance for Frequency-Selective Fading Channels
Analysis. The dual of the time-selective fading channel is another
special case of a WSSUS channel known as a frequency-selective fading
channel. In this section the effect of frequency-selective fading on the
performance of DS/SSMA systems is considered.

The channel correlation function for a frequency-selective fading

channel is defined (as in (2.70)) by

g, () £0,(r,0). (3.50)
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l An additional assumption about the selectivity of the channel is necessary
in order to obtain useful results regarding the performance of DS/SSMA
systems over frequency-selective fading channels. As can be seen from

the equations that follow, a frequency-selective fading channel exhibits

rif . memory and therefore introduces inters,mbol interference into the received
>‘; . signal. We will assume in this section that the selectivity of the channel
ﬁi ' is such that, in the detection of a given data symbol, we need only be
concerned with the intersymbol interference due to the two adjacent data

symbols. This condition is equivalent to assuming that
b g, (1) ~ 0 for [1| >1T. (3.51)

- - Channels exhibiting higher degrees of selectivity will require the inclusion

u u of the effects of more than the two adjacent bits in the analysis of the

g ' performance of the system, in which case the analysis that follows can be
modified in a straightforward manner. However, as noted in [Bello and

!: Nelin, 1963], the need to include more than two adjacent bits in the
system analysis is frequently an indication that the channel is too
frequency-selective for use in practical communication systems.

L Using (3.50) and (3.51) in (3.23), we find that the variance of the

faded portion of the i-th signal for a frequency-selective fading channel

is

P 2 T T T
Var 1='i =3V ‘[_'T gi('T) j‘o _[‘0 fi(T,T;t,s)dtdsdT. (3.52)

Notice from (3.11) that the double integral with respect to t and s in
(3.52) reduces to the product of two single integrals, each of which is

given by
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\ R (- " <
bi ORi( T) + bi,lRi( TY, T 0

3
where Ri(T) is the continuous-time partial autocorrelation function

defined in Chapter 1. Upon substitution of (3.53) into (3.52), we

obtain

T
o2 ~2 - 2
Var Fy = Byy Io 8 (D (R (M+{by by | _1#0; by, 1JR; (MR, (MR (M) o

Averaging (3.54) over all data patterns, it is easy to see that the

variance of the faded portion of the i-th signal is

Var F =p2j’T ™ RE(r) + RE(T) Jdr
TRT YL By i i :

(3.53)

(3.54)

(3.55) "

The variance of the interference component Ii may be evaluated for

a frequency-selective fading channel by using (3.50) and (3.51) in (3.25)

to obtain
T rT T
vk,i = jo ”0 [Tgk(T)ai(t)ai(s) X (t,s,T)drdtds

where

T
a1
x(t,s,T) = T foak(t-fk T)ak(s-Tk-T)E{bk(t-Tk-T)bk(s-Tk-T)}di.
Letting u = t-T and v = s-T in (3.57), we note from (3.33) that

a; (t)a (s (t,s,T) = E{fk,k’i(fﬂk,ﬂ‘rk;t,S)},

~

(3.56)

(3.57)

(3.58)
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and hence using (3.37), (3.57) reduces to

x(t,8,m) = 1 R (|e-s]). (3.59)

Using (3.59), (3.56) may now be rewritten as

R
LT T T .
Y * 1 J-”T g, (T)dr Jo fo a; (t)a; ()R, (| t-s|)deds. (3.60)
t ‘ After a change of variables T = t-s, (3.60) reduces to
5 T T, .
Vie g = E[T g, (T)dr j‘o R, ()R, (T)dr
| &)

1ot T 2 a2
EI g, (T)dT J‘O [Re (™) + Ry . (T)]dr
T > H

21> T
= 3T ki Io g, (T)dr (3.61)

where the second step follows from [Pursley and Sarwate, Section V, 1977a]

and the last step follows from {[Pursley, eqs. (11)-(12), 1977]. From

l (3.24), (3.61), and (3.27), the variance of the interference component
I, is
] i
- K 9 Tz IT 2
Var I, =P X r, [y, —= g, (T)dr + ——= 1 . (3.62)
E - i k=1 k,i" 'k 3T 0 k 12N3
k#i

i : Using (3.55) and (3.62) in (3.28), the signal-to-noise ratio at the
E - output of the i-th correlation receiver for a DS/SSMA system operating
p over a frequency-selective fading channel is
I
!
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N 2y, -
(.9 i ~2 2
SNRi - { 26 + 2 J DL(T)[R].(T) + Rl(T)]dT
™ 0
3
K T T 2
2 2 "¢ n T -k
+=5 Zor lY, 35, g/ (mdr+ 13 (3.63)
T mp Kol k3T Sk 1283 _
k#i -

Numerical Results. In this subsection (3.63) is specialized to the case

of a specific channel covariance function gk(T). In all that follows it
is assumed that gk(T) satisfies (3.41); that is gk(T) is non-zero only
over the interval]T] < XTC. Analogous to the time-selective fading
channel case, e define XTC to be the correlation duration of the frequency-
selective fading channel. From (2.77) and (2.78) we see that, provided
(2.82) is satisfied, the first zero-crossing of the Fourier transform of
gk(T) is defined to be the correlation bandwidth of the frequency-selective
fading channel. In practice, however, the correlation bandwidth of the
channel is usually defined in this manner without taking into account the
bandwidth of the transmitted signal ({Monsen, 1971}, [Bello and Nelin,
19631). Thus from the theory of Fourier transforms, if a frequency-
selective fading channel has a correlation duration ch, the correlation
bandwidth of the channel is proportional to ()\T‘:)-1 (see [Monsen, 19711]).
Consequently, the correlation duration of the channel is also a measure
of the correlation bandwidth of the channel.

Using (1.9), (1.10), and (3.41) in (3.63), we find that for a ;;
frequency-selective fading channel with a specified channel covariance

function which satisfies (3.41), SNRi is
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{ N, ZY],Z. { j(1+ﬁz)Tc
= { = + — Z [C (L-N) + C (z)] T g, (T)dr
28 T2 4=0 ‘Tc c®i
(48T,
+2[m @-N) + 7 (8)] J“M T, (T=4T )g, (T)dr
c
U+ )T, 2
+ [A (L-N) + A )1 j S(r-£1 ) g, ()ar]
K 2Yk IT ] %
+ [—5 [ g (mar + --— ] (3.64)
kel Kol g3 g K 6N
k#i

For the frequency-~selective fading channel the unit-energy constraint
on the fading process covariance function implies [Van Trees, Section

12.1, 1971}

-]

j‘ g (T)dr = 1. (3.65)

Noting that gk(T) = gk(-T) and using (3.65) in conjunction with (3.41)

in (3.64), we see that the last term of (3.64) reduces to

1< ZYZI . K

[—— (r)dr + ] =1 T 2y )r . (3.66)
k P i3 Y B 6N°  6N° k=1l k
k#i k#i

Triangular and truncated exponential covariance functions for a
frequency-selective fading channel are defined in a manner analogous to

tae definition of the corresponding channel covariance functiomns for a

time-selective fading channel (i.e., 81 is defined as in (3.43) and (3.44)).

For this channel model however, (3.65) implies that the normalization

factors A and B appearing in (3.43) and (3.44) are given implicitly by

-
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2 =a\T

T =g_g[1_e “1=1, (3.67)

A —
\Y

where A is defined in (3.41). For a frequency-selective fading channel

with a triangular channel covariance function, SNRi is found to be
2
2y n
sie'P = (— £ 8, c2u-m + Fwir,d
i 3 L4771 i 42
YN© £=0

3
B

2 2 4 0,2 2 3

B, lm @-m+m (IT, G + 5 o, @0 + 27T, (D]

+

K N

vz (1+2y§)rk Lt e 17E (3.68)
6N° k=1 ,
k#i

The corresponding result for a frequency-selective fading channel with

a truncated-exponential channel covariance function is

2
N Y no ~of
SNRi(Z) = {2—2 + ﬁ-— % e a!'[(Ci(f:-N) + Ci(l))(l-e L)
N°[1l-e ] 2=

1 "aﬁz B,
+ 2(ﬂi(L-N) + ﬂi(l))(;[d£+l -e (a(Z+B£)+1)]-Z(l-e ))

-of 2(4+8 ) 2

v @amrlan @+ 2+ L frus )’ s —2 +
@ o
-af -af
+ Zf;[e z(a(z+ﬁz)+1) - a(4+1)] + 22(1-e L))]
K
1 2 -
+ == T [1+2y_]r_ .} *. (3.69)
o0 k=1 K ki

k#i
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.t Equations (3.68) and (3.69) were evaluated as a function of the
correlation duration using the same code sequences as for Fig. 5, and
the results are shown in Fig. 8. As in the time-selective fading case,
it is assumed that Ye =Y for all k, 1 < k< 6, and 5/NO = 10 dB. as
before, the correlation duration for a triangular channel covariance
function is defined to be XTC. However, for a truncated exponential

channel covariance function, we define the correlation duration to be
the value of XTC satisfying the equation gk(XTc) =10 (i.e., o satisfies

-axTc -1 -ach -5
afl-e 1 e = 10 "). Once again, this particular definition of

correlation duration was selected to minimize the effect of truncating gk(T).
From Fig., 8, we note that for small values of XTC, SNR for a frequency=-
selective fading channel is degraded significantly. Because the frequency-
selective fading channel is the dual of the time-selective fading channel,
as was pointed out in Section 2.6, such a result could have been predicted
directly from Fig. 5 using a time~frequency duvality argument. Physically,
what is occurring is that as the correlation duration of the channel goes

to zero, the correlation bandwidth of the channel approaches infinity. From
(2.84), we see that for small values of correlation duration, the frequency-
" selective fading channel model may therefore be replaced by the non-
dispersive fading channel model of Section 2,7, Following an argument
identical to that used for this limiting situation in the time-selective
fading channel case, we see that small values of correlation duration

lead to a reduction of the receiver integrating effect on the diffuse
portion of the i-th signal. Note that the contribution to Zi of the

diffuse portion of the K-1 interfering signals is unaffected by the

correlation duration of the channel, as can be seen from (3.66).

I
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Figure 9 illustrates the dependence uf the signal-to-noise ratio
on the square of the transmission coefficient Yy for a frequency-selective
fading channel with a triangular ccvariance function using the same
signature sequences as used for Fig. 8. As might be expected, the
signal-to-noise ratio is degraded in proportion to the intensity of the
fading process. From Figs. 8 and 9, we may ascertain that for a given
signal-to-noise ratio to be achievable the parameters ¥y and ch must be
constrained to a certain range.

The graph of SNR vs. 5/N0 for a frequency-selective fading channel
with a triangular channel covariance function is shown in Fig. 10. As
in Fig. 7, the SNR curve '"flattens-out" as 6/NO increases for the same
reasons as given for the time-selective fading channel.

The comments made in the last section about the choice of signature
signatures used to evaluate expressions (3.68) and (3.69) are valid for
the frequency-selective fading case, also. In particular, had the AO/LSE
phases of the m-sequences been used instead of the LSE/AO phases, the
results obtained would differ from the results presented in Figs. 8-10
by less than 0.006 dB.

In the discussion up to this point, we have not indicated which of
the two singly-spread channels is a better model for actual radio
channels, especially channels over which DS/SSMA communication systems
are to be used. We will now correct this omission. In practice, most
fading channels exhibit some degree of frequency-selectivity; in

particular, multipath channels are frequency-selective fading channels

(e.g., see [Stein, pp. 351-355, 1966]). In addition, because the bandwidth
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occupied by spread-spectrum systems (including DS/SSMA systems) is
typically quite large, the channels used by spread-spectrum systems often
appear frequency-selective to the spread-spectrum signal, even though

the same channel would not be frequency-selective to a non-spread-spectrum

signal transmitting the same data (see (2.84)).

From the above we may conclude that while the time-selective fading
channel may be a good model for some radio channels, the frequency-
selective fading channel model is of more practical value when discussing
the performance of direct-sequence/spread-spectrum communications via
multipath channels. Hence, in the remainder of this chapter, emphasis

will be placed on frequency-selective fading channels.

3.4 Comparison of Single-User PSK and DS/SS Communications via

Fading Channels

In Chapter 1 it was noted that spread-spectrum techniques could, with
the proper choice of modulation technique, be effective in combating
the effects of fading encountered by conventional modulation systems
(e.g., PSK, FSK) over communications channels. In surveying the
literature, we find many references which note in particular that use of
direct-sequence/spread-spectrum (DS/SS) modulation is effective in
combating multipath and the associated frequency-selectivity (see

Section 3.3) present on many channels (e.g., see [Cahn, 1974],
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{Jacobs, 1975], [Massey and Uhran, 1975], and ([Viterbi, 1979]). Although
several "heuristic" proofs of this comjecture exist ([Cahn, 1974], [Jacobs,
19751), to date no rigorous demonstration of this conjecture has been given.
In the following, we will give such a demonstration. In particular, we
will compare the performance of single-user PSK and DS/SS communication
systems over singly-spread Rician fading channels. Throughout this
comparison, average signal-to-noise ratio at the output of a correlation
receiver will be used as the performance measure.

From (3.40), we see that for a single-user DS/SS system operating
over a time-selective fading channel, the average signal-to-noise ratio
at the output of a correlation receiver is given by
T

2
+ B 1 (o) (owyau) (3.70)
™ %0

SNR = {

Rl

Since the expression for average SNR given by (3.70) does not depend on
the signature séquence used by the DS/SS system, we may conclude that
equation (3.70) is also the expression for average SNR for a biphase
PSK systém operating over a time-selective fading channel. For if the
signature sequence [aﬁi)} is identically one for =» < n < @ in (1.2), the
DS/SSMA system model shown in Fig. 1 reduces to a PSK system, when K = 1.
From the above discussion we may conclude that so far as single-user
systems are concerned, the performance of PSK and DS/SS systems are
identical over time-selective fading channels.

For frequency-selective fading channels however, the result of this
comparison of the two systems is quite different. From (3.63), the average
SNR at the output of a correlation receiver for a single-user DS/SS

system operating over a frequency-selective fading channel is

et At s e e A e m e m amdaw e sl a A A At ke ha faataia® faMala mole & x om T mbam a e Ee X o e o e s
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Yo, 22 0Ty (82 eryer? %
s\R = {55 + 3 Io g(T) [Ry (T)+R (1) 1dT} 72 . (3.71)

The average SNR for a PSK system operating over a frequency-selective

fading channel may be found either directly from (3.52) by letting ai(t) =1
in (3.11) or by noting that for a PSK system, Ri(T) = T and ii(T) = (T-7),
and using (3.71). Both of these results follow from the comments made in
the previous paragraph about the reduction of the DS/SS system model to

the PSK system model. Using either method, the aveiage SNR for a PSK
system is found to be

o

SNR = {7

2 .
+ ng J g(m) (1 2+ (T-1)?1ar. (3.72)
0

In Fig. 11 we have evaluated eqs. (3.71) and (3.72) as a function of

the correlation duration of the channel for two values of Y2 and for

8

ﬁ; = 10 dB. In evaluating (3.71), we have used an m-sequence of length
127 with its LSE/AO phase as the signature sequence for the DS/SS system.
Thus for the PSK system, the correlation duration scale is interpreted as
being marked in intervals of 1%7 of a bit. The relatively large advantage
of DS/SS over PSK (e.g., 6.04 dB for A = 40, YZ = 0.2) may be thought of
as frequency diversity of spread-spectrum communication. Most of this
improvement results from the multipath rejection capability of a properly
designed spread-spectrum system. It should be noted that this multipath
rejection is fully achieved only if the signature sequences have good
aperiodic autocorrelation properties. As will be seen below, poor choices

of signature sequences will result in a signal-to-noise ratio that is as

much as 3 dB below the DS/SS curve of Fig. 1l.
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We will now examine Fig. 11 in greater detail.

First, from (3.41)

and (3.65), for small values of correlation duration, g(v) approaches

a delta function of unit area. Since Ri(O) = 0 and ﬁi(U) = T from (1.7)

and (1.8), we see that for a correlation duration of value zero, (3.71)

and (3.72) both reduce to

N
_ (.0 2.;E
SNR = {26 + v}

(3.73)

i.e., the performance of the two systems is identical for XTC = 0. From

(3.73), we see that for ch = 0, SNR = 8.239 for YZ = 0.1 and SNR = 6.020 dB

for YZ = 0.2 for both systems. This convergence of performance at A = 0

as well as the performance of both types of systems at other values of ch

can be explained physically by considering the autocorrelation function of

the signature sequence together with the concept of multipath. To see

this, note that the continuous-time periodic autocorrelation function

Gi(T) of a code waveform ai(t) is defined as

A T
8, (1) = Io a, (c-T)a, (£)dt

Ri(T) + Ri(T),

where the last line follows from (1.7) and (1.8).

(3.74)

(3.75)

Using (3.75) in (3.71),

we see that SNR for a DS/SS system operating over a frequency-selective

fading channel becomes

N 2 T A
SR = (55 + %IO g(M82(r) = R (MR (

T)]dT}-% (3.76)
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which is a function of both the aperiodic and periodic autocorrelation
functions of the code waveform. From the discussion in Section 2.6,

"window-

g(T) appearing in (3.76) may be considered to be a weighted
function" on the allowable range of delay-spread of the multipath of the
fading channel. Thus for a given value of correlation duration, g(T)
"passes" only multipath having range delays less than XTC. Consequently,
multipath present on the channel will degrade the performance of a DS/SS
system, the extent of degradation being determined by the exact form of
the continuous-time autocorrelation functions of the code waveform.

To give a concrete example of how the shape of the autocorrelation

functions of the code waveform affect the performance of the DS/SS system,

assume that the DS/SS system employs the N = 120 sequence given by

{a(i)} = {1,1,1,0,0,0,...}. The magnitude of the continuous=-time periodic
autocorrelation function of ai(t) is shown in Fig. 12. From Fig. 12 and
(3.76) we note that multipath signals having delays which are odd multiples
of 3TC/2 will be rejected by the DS/SS receiver. On the other hand,

multipath signals having delays which are even multiples of 3Tc/2 will not

be rejected by the receiver, thus causing degradation of the DS/SS system i
performance. Multipath signals having delays of other values will also i

tend to degrade the system performance, the extent of degradation being

determined by the value of |6(T)| for a particular value of delay 7. Now \

consider the performance of the DS/SS system when an m-sequence of period 127
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120

-3 0

Figure 12. Magnitude of the autocorrelation function of the

sequence {1,1,1,0,0,0...}

le )|

127

(N = 120).

Figure 13. Magnitude of the autocorrelation function of an m-sequence

(N = 127),
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is used for the signature sequence. The magnitude of the continuous-time
periodic autocorrelation function of this signature sequence is shown in

Fig. 13 [Stiffler, 1971]. In this case, because of the 'noise-like" periodic

autocorrelation function of the m-sequence, all multipath signals
arriving with delays greater than one chip duration will tend to be
rejected by the receiver, as can be seen from (3.76). Because of its
good periodic autocorrelation function an m-sequence is expected to be a

better candidate for a signature sequence than the "periodic" signature

sequence discussed above, when system performance is being evaluated for

- a frequency-selective fading channel. In Fig. 14 we have evaluated (3.76)
for three '"periodic" signature sequences of length 120 having periods of
2, 6, and 12, respectively, and for one m-sequence of period 127 for a

[1 triangular channel covariance function and for éi = 10 dB, yz = 0.2. From
. 0

- this figure we see that our conjectures about the performance of the two types

of signature sequences are valid. For values of A\ greater than two, the

m-sequence outperforms all other signature sequences, primarily due to the

_1f1!!it?“f'
Sy

periodicity of the periodic autocorrelation functions of the other signature se-

quences. Note that for A = 20, the difference in performance of the two types of

04 1 A SR S AR aun o

.” . signature sequences is 2.87 dB. The reason that all of the SNR curves exhibit a
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general upward trend is due to the unit variance constraint (3.65) on the
channel covariance function gi(T). For large values of correlation
duration, gi(T) is "spread-out'" over the range 0 = 7 < XTC and since the
area under gi(T) is constant, the magnitude of gi(T) decreases for
increasing values of KTC, resulting in a smaller contribution of the
integral term appearing in (3.76).

The above explanation has centered upon the periodic autocorrelation
function of the code waveform as the basis for DS/SS system performance,
without taking into account the aperiodic autocorrelation terms which
also appear in (3.76). In addition, we have neglected the "gmoothing"
effects of the integral appearing in (3.76). Thus the explanacion given
above should be treated as a "first-order" model of what is physically
occurring in the DS/SS system. Nevertheless, this first-order model is
accurate enough to predict the performance of -a PSK system over a
frequency-selective fading channel. Treating the PSK system as simply
a DS/SS system with a constant=code waveform, the periodic autocorrelation
function of the PSK code waveform is a constant function. Thus the PSK
system does not reject any multipath signals, resulting in its inferior
performance compared to a DS/SS system using an m-sequence for its
signature sequence.

3.5. Performance Evaluation for Random Signature Sequences

In this section approximate expressions are obtained for SNRi for
both time-selective and frequency-selective fading channels with a
specific channel correlation function. These approximations are the

expected values of SNRi when the signat re sequences are random binary

P PIDUEE WS - ik PP - S P
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sequences. By random binary sequences we mean a set of K statistically

(k)} is

independent binary sequences {aik)}, 1< k< K. Each sequence {a

(k) (k)

a sequence of independent random variables a for which Pr{a +1} =

]

Pr{aék) = -1} = %. The expacted value of SNRi is just the average
signal-to-noise ratio §ﬁ§, where the averaging is over all possible sets
of K binary sequences of period N. One reason for computing SMR is that,
NI in some sense, SNR is a measure of the asymptotic performance of a DS/SSMA
system for which the signature sequence length N is very large [Roefs, 1977].
A second reason for computing SNR is that, as we will show below, SNR is

‘55 a close approximation (for a reasonable set of signature sequence) to

SNRi, yet evaluation of SNR does not require computation of the aperiodic

correlation functions of any specific sets of signature sequences.
First we note that for random binary sequences the moments of the

aperiodic autocorrelation functions are given by

{0,440
Ble, )} = |

. ] (3.77a)
= N-|2],440

- E{C§(z)} =
o (3.77b)
- fb,z#o, ki

- e{c, (e, ()} =

] N°, £4=0 (3.77¢)

E{Ck(z)Ci(z+l)} =0 Vk,i . (3.77d)

U5 S Y . e
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Equations (3.77a)-(3.77d) were previously derived by Roefs (1977) except
for the case £ = 0 in (3.77a) through (3.77¢c). From the definitions of

Ck(z) and random binary sequences, for £ = 0 we obtain

N-1 K).2 N-1
el () = E( T (a{¥1® = &lZ 1] = w. (3.78)
j=0 j=0
Similarly we find that
N-1 N-l .
Ecy RO (@™ 2 aM% = w? Vi (3.79)
j=0 3 h=0

Using (3.77), we may evaluate the expected values of the code-dependent
terms in (3.46) and (3.47). Let SNR & T dr—'[E{Var F + Var I, } + N T] %
where Var Fi and Var Ii are now random variables because the signature
sequences {aék)} are random. Using the above results, we find that for a
time-selective fading channel with a triangular channel covariance

function, SNR is

2 2 N, .
Sm={xﬁ§[1-%%]+ulﬁ%lm{ﬁ -45+6}+£K—1—>-+§9}!5 (3.80a)

for A < 1 and

R = (& (1 - % %] = (R-D)1 - K-1 ° 1%, (3.80b)

N x]+ 3N

for A 2 1. The corresponding result for a time-selective fading channel

with a truncated-exponential channel covariance function is
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R S S R
SNR = Nol[(-e )+Na(e (e + 1)-1)]
2
+ Zx_éz_-_l_l (1 - e -2(5 (1-e® 8 + 1))
2 _ B2 28 2 ( -%
+ (az e "B+ gt az))] + Fl } (3.81a)

for A\ < 1 and

2
SR = { %& [(1-e My + @ (™Mo + 1)-1)]

2 N
2y~ (R-1) 2 1, -a (K-1) 0 1-%
+ o [1+ > (a(l e -1+ 55+ 5 } (3.81b)

for A 2 1, where as before, Yi = Y2 for all k.
Similarly, SNR for a frequency-selective fading channel with a

triangular channel covariance function is given by .

N
Ty 1.2 1 3 K-1 -%
SR = (B zen - 2eh e P awn )+ Easyh + F 1, .82
for A < 1,
2
s = (AL - N 2aena - 2D v e - a8

p2a - s+ 2o+ 207 - 2ar 2w Ly 53 1% (302

for 1 =\ < 2, and

‘
41
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_X_ 1 1 2 __1. _ n(n-1)
i Tev AR T N ) +(“ 1)( ) N

+B(L -2+ 3BNBA -2+ 200+ 2% - far 2 8001

N
&L g vy?) + 21 (3.82c)

for 2 < A < N-1. The corresponding result for a frequency-selective

fading channel with a truncated-exponential channel covariance function is

of
)

N
1,2 -2 28 (R-1) 2, .0 1-%
+(1+N)(a2 e T+ = +a\)]+ - (F2YO+ 5 172, (3.83a)
for A < 1,

2
SR = (— e ((1-e™ -§+ % e Y (1))
(1-e )

+ O+ H G Ve B + Y Ea-"P)
[o4

-2 e+ D-eP @+ )+ - (1-e7F))
2 2, 2y ;B _3_1*'_5)_ 2
PRl T e (a+eh+ * P

+2 (P @+ pD - @+ D) + "]
+ K... (1 + 2'Y ) + — } !5 (3.83b)
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for 1= A < 2, and

SNR = f————¥ax——5 [Nz(l-e-a - é + % e-a(a + 1))

l_.;' (1-e )N

\ n-1

F + (N2 + N) (—% -0+ -ﬁ- + -—g— ) + Z e'az{N(l-e'a)
; o o £4=1

- 2N[§(0&£ + e (@t + 1) +1) - 4(1-e™ D]

{
3 + ol + 2 “%) (R VTV R _%)

e-dn[N(l-e-aB) - 2Nq§(an +1- e‘“B(a(n +B) + 1))

68~ Mo
o e e s . MR X | A .

- n(l-e.aB)) + 2N(n2 + 23 + —% - e-aa((n + B)Z + %(n + B) + —%)
o o

W

+ B8P @@+ 8) + 1) - an-1) + n2(1-e"))]]

. N
" K-1 2 0 1-%
3 *55 L+ 2y + 3 } (3.83¢)

for 2 £ A < N-1. Note that expressions (3.80) through (3.83) for SNR

. . 2
are functions only of the channel covariance function, the parameter Y ,

the number of users K, the length of the signature sequence, and the bit

energy to noise spectral density.
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In order to ascertain the accuracy of the above results as an
approximation to (3.46), (3.47), (3.68), and (3.69), SNR was evaluated
for various values of Yz and ch for N = 127, K = 6, and these results
were compared with those obtained in Sections 3.2 and 3.3 for the
corresponding channel type and channel correlation function. For the
ranges of Yz, XTC, and 6'/N0 used in Figs. 5 and 8, the expression for SNR
differed from the exact expression for SNRi by less than 0.05 dB, for the

specific signature sequences used to obtain Figs. 5 and 8. As a further

check on the accuracy of the above results, (3.46) was evaluated for a
maximal-connected set of m-sequences using LSE/AO phases [Pursley and
Roefs, 1979] for N = 31 and N = 63 and the reéults were compared with the
corresponding results obtained from (3.80). Once again, for YZ in the
range 0.05 < 0.2 and A < 0.1N the difference between SNR and SNR; was
found to be less than 0.05 dB. Thus, based on this comparison of
numerical results, we conclude that SMR is a very good approximation to
SNRi for the sets of signature sequences used above. Furthermore, from
the comments in Section 3.2, it follows that SMR is also a good
approximation to SNRi for maximal-connected sets of m~sequences of length
127 with AO/LSE phases. Since the expressions for SNR are considerably
easier to evaluate than the corresponding exact expressions, the quantity
SNR is a useful approximation for the preliminary design of a DS/SS system
operating over a Rician fading channel. Examples of this application of
SNR for the AWGN channel may be found in [Pursley and Roefs, 1979]. It
should be noted that in the absence of fading, expressions (3.80)

through (3.83) all reduce to the expression obtained by Roefs and Pursley

(1977) for SNR for the AWGN channel by setting YZ = 0 in (3.80)-(3.83).
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The accuracy of the expressions for SNR as approximations to SNRi

for the sets of signature sequences studied above (i.e., maximal-connected

sets of m-sequences with LSE/AO or AO/LSE loadings) does not imply that

any arbitrary collection of m~-sequences will provide the same performance.

As an example of this, (3.68) was evaluated for N = 31, K = 3, using two

different collections of m-sequences. One set maximizes the parameters

r, . and the other minimizes r These two sets were found by an

k,i k,i°

exhaustive search of sets of 3 m-sequences of length 31 having every

possible phase [Garber, 1978]. The comparison of (3.82) with (3.68) for

these two sets is shown in Fig. 15 for Yz = 0.05. Note that there is
significant difference (> 0.7 dB) in performance between the best set
(curve 1) and the worst set (curve 3) of signature sequences. This

difference is larger for larger values of 3/N0

For very large 5/N0 and very small Yz, this difference is given by

)

~

i K
£ L r. . (worst case)
k=1 k,i
ASNR(dB) = 10 log,, kzl (\
| £ r, . (best case)
k=1 k,i
i

X

which, for these two sets of signature sequences, is 2.353 dB.

a

or smaller values of YZ.

(3.84)
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CHAPTER &
PROBABILITY OF ERROR BOUNDS FOR DS/SSMA COMMUNICATIONS
VIA FADING CHANNELS

In Chapter 1 we noted that for DS/SSMA communications via an AWGN
channel, three measures of system performance are available: average
signal-to-noise ratio (SNR), worst case performance, and probability of
error (Pe). In the previous cha ter we have analyzed the performance of
DS/SSMA communications via fading channels using SNR as the system
performance measure. In this chapter we analyze the performance of
DS/SSMA communications via fading channels using probability of error at
the output of a correlation receiver as the system performance measure.
The results obtained here represent a generalization of the performance
analysis of [Yao, 1977] which considered only AWGN channels.

Although we shall use probability of error as the system performance
measure, as noted in Section 4.1, exact evaluation of the probability of
error at the output of a correlation receiver for a DS/SSMA system
operating over a fading channel is very difficult. Hence we shall
concentrate our effort on obtaining bounds on Pe' Specifically we shall
bound Pe through the use of an isomorphism theorem from the theory of
moment spaces which provides relationships among arbitrary moments of
a random variable.

Throughout this chapter we shall concentrate on the two singly-spread
channels considered in Chapter 3: time-selective fading channels and
frequency-selective fading channels. With appropriate changes in the
equations that follow, the results presented below may be generalized

to other classes of WSSUS fading channels.

e
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4.1. Moment Space Bounds on Probability of Error

In this section we shall present the general problem of obtaining
moment space bounds on the probability of error at the output of a
correlation receiver for the DS/SSMA system model considered in Chapter 3.
In Sections 4.2 and 4.3 we shall consider specific examples of the moment
space bounding technique applied to time-selective and frequency-selective
fading channels for second and N-th moment bounds, respectively.

From Chapter 3, we found that for a DS/SSMA system operating over a
doubly-spread fading channel, the output of the correlation receiver

matched to the i-th user's phase-coded waveform is given by (see 3.18)

Z, =N. +D, +F. + I, (4.1)
i i i i i

where Ni and Di are given by (3.14) and (3.12), respectively and Fi and Ii

are the real parts of the complex quantities %i and Ti defined by (3.13)

takes on the
,0

probability, the probability of error at the

and (3.15), respectively. Assuming that the data bit bi

values {+1,-1} with equal

output of the i-th correlation at the decision instant t = T is given by

=

0
¥ priz, > Olbi,o = -1} + 5 priz; < o\bi’0 = +1}

Pe = % Pr{errorlbi -1} + % Pr[errorlbi 0" +1}

= +1]}
(4.2)

¥ efer(z, > O\bi(t),bi’o = -11} + % Efpr(z; < O\bi(t),bi,o

Note that in (4.2) we are simply evaluating Pe conditioned upon bi(t)

and then averaging over bi(t) to obtain an expression for Pe.
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For convenience, define h & JP/2 T and z £ Fi + Ii' Then the first

term inside the curly brackets of (4.2) may be rewritten as
- - ___.h-z S -
priz; > 0[b (0),b; 4= -1} = B[ b () by = -1] (4.3)

where Q(x) = 1 - 8(x) and ¢ = v%ﬁgf is the standard deviation of Ni

(see 3.19). In (4.3), the expectation over z conditioned upon bi(t) and
b]._’o = ~1 denotes expectation over all the random variables bk(t)(k # i),
Tk’ ¢k’ and Bk(T,t) appearing in z. Since given bi(t), z is symmetric

about zero, (4.3) may also be written as

Prlzy > ofby (0,0 o= 1) = 0D + D) b (0,0, = -1} @)

0

In a similar fashion, the second term inside the curly brackets of (4.2)

may be expressed by

Priz; < 0lb (0),b; o= +1] = ELOCFE) + 0B |b (6 ,b, = 41} (4.5)

From (4.2), (4.4), and (4.5) we find that

prlerrorfb, o= -1}= EEREDQED b (0,5, o= -1}b, = <11 (4.6)

and
Prierror|b, o= +1}= EEREZHQED) b, (0,5, o= +1}[b, = +1]1.  (&.])

Hence, if the expectations in (4.6) and (4.7) can be evaluated, the probability

of error at the output of the i-th correlation receiver may be obtained.
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Several approaches are available for evaluating (4.2). The first is

3
i
H ll the direct approach, in which the expectations in (4.6) and (4.7) are

PR Ay §

directly evaluated. In general, because of the complicated form of z,

however, Pe is very difficult to evaluate either analytically or

R { RPN Y

numerically. To give an indication of the amount of difficulty required

e g

to evaluate (4.2) numerically, a recent attempt to evaluate the expecta=-

tions in (4.6) over only Ti and b, required 1.4 minutes of CPU time on a

k

- Digital Equipment Corporation DEC-10 computer system for a two-user

Y 0

DS/SSMA system employing a code sequence of length 127 for a single

value of 6/NO. Clearly the analytical or numerical approach to evaluating
(4.2) becomes unwieldy for larger numbers of users, longer code sequences,

or a large number of 6/No values.

A second approach to evaluation of (4.2) is by simulation and use of

the Monte Carlo method. Such an approach was taken by Orr (1977) in

evaluating the probability of error of a DS/SSMA system using a slowly-

fading (nondispersive) fading channel. The major drawbacks of the ;
simulation method of evaluating Pe are that the technique requires a
considerable amount of computation time and that it provides very little ]

insight into the design aspect of the problem.

o BT,

A third techaique to evaluating (4.2) and the one employed in the

remainder of this chapter is the moment~space bounding method. In order

NPT I S

to understand the theoretical background for the moment-space bounding

method, we will now state, without proof, an isomorphism theorem {Yao, 1977]

'S

originally developed in the theory of games ([Dresher, et. al., 1950},

[Dresher, 1953]) which provides relationships among arbitrary moments of

..
i PN

a random variable.

1 P
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Isomorphism Theorem: Let Y be a random variable with a probability
distribution function GY(y) defined over a finite closed interval

I = [a,b]. Let kl(y),kz(y),...,kN(y) be a set of N continuous functions
defined on I. The generalized moment of the random variable Y induced

by the function ki(y) is

1
’—J
b1

m, = [k () oy () = Edk (0], i %.8)

We denote the N-th moment space 7 by
N nb
Mm={m= (my,.00m)€ R |mi = Jaki(y)dGY(y),l S i S N,GE PO ¢.9)
where P(I) is the set of probability distributions defined on I = [a,b]
and RN denotes N-dimensional Euclidean space. Then 7] is a closed, bounded,
and convex set. Now let C be the curve r = (rl,...,rN) traced out in RN

by r, = ki(y) for y in I. Let X be the convex hull of C. Then

X =m. (4.10)
A brief proof of the above theorem may be found in [Yao and Tobin, 1976];
a detailed discussion of the proof is given in [Dresher, et. al., 1950]}.

To demonstrate how the isomorphism theorem can be used to solve

the problem at hand, let N = 2 and let kz(z) be equal to the expression
inside the curly brackets of (4.6). Let kl(z) be some continuous function
of z whose generalized moment my given by (4.8) may be readily evaluated.
Now consider a plot of kz(z) versus kl(z) and denote the convex hull of
the resulting figure by . From the isomorphism theorem, X = 7 so that

knowledge of m, = E(kl(z)‘bi(t),bi = -1} enables us to obtain bounds on

0

m2 = E{kz(z)lbi(t)’bi,o = -1}. But by our choice of kz(z),

P O TP Y
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Pr{errorlbi(t),bi,o = -1} = m, (4.11)

so that we have, in fact obtained bounds on the conditional probability

of error, conditioned upon bi(t) and bi 0= ~1. Repeating this process

0= +1} and averaging the sum of these two bounds

over bi(t), from (4.2) we see that we have bounded the probability of error

for Pr{errorlbi(t),bi’

(Pe) through use of the isomorphism theorem.

In practice, we would like to choose kl(z) so that the convex hull
of the plot of kz(z) versus kl(z) is "thin" and hence the Pe bounds
obtained are tight. Ideally we would like to choose kl(z) = kz(z), in
which case the convex hull X is infinitely thin and the upper bound
PeU equals the lower bound PeL. However, this would require
knowledge of w, = E[kz(z)] which we assumed could not be directly
evaluated. Thus in choosing kl(z) we must, in general, trade-off the
thickness of ¥ with the ease of gvaluating m, . Based on previous results
in the published literature ([Yan, 1975],[Yao and Tobin, 1976],{Yao, 1977])
a promising choice for kl(z) is kl(z) = zN, where N is even. The error
bounds resulting from such a choice are known as N-th moment bounds.

For a given choice of kl(z) and kz(z), three methods are available
for evaluating PeU and PeL through the use of the isomorphism theorem:
graphical techniques, numerical techniques, and analytical techniques.
The graphical technique is attractive from the viewpoint that in order
to employ it, we need only plot kz(z) versus kl(z) over the range of z
and complete the convex hull X by means of a straightedge. Assuming that

my is known, the conditional upper and lower error bounds, conditioned
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upon bi(t), may be read directly off the graph. Repeating this process
for all data bit patterns bi(t) of interest and averaging the conditional
error bounds over bi(t), we obtain bounds on PeU and PeL. However as
pointed out in [Yan, 1975], for sufficiently complex plots of kz(z) versus
kl(z), determination of X by eye becomes quite difficult. In these cases,
it becomes necessary to find X by numerical or analytical means. As
might be expected, the numerical technique involves finding the convex U
and convex [\ regions of C through numerical evaluation of the second
derivation of kz(z) with respect to kl(z) over the range of z. The
convex hull of C is then found directly using numerical techniques. The
analytical approach to finding X is by writing equations for X based on
knowledge of the convex regions of C. From a design viewpoint, the
analytical technique of finding X is the preferred method since the
resulting equations describing X are explicit functions of the DS/SSMA
system parameters and the fading channel characteristics. Because bounds
on PeU and PeL are determined by X and m, DS/SSMA system performance can
therefore be optimized for specific fading channels. In practice, as
noted in Sections 4.2 and 4.3, the actual method used in evaluating ¥ is

a combination of both numerical and analytical techniques.

The above techniques of bounding Pe through the use of the isomorphism
theorem have already been used successfully in the evaluation of the
performance of several other types of communication systems including
binary pulse-amplitude modulation (PAM) systems with intersymbol inter-

ference ([Yao and Tobin, 1975],{Yan, 1975],[Yao and Tobin, 1976]),




e Y S SN A

Y

By i

AT 4

,-w,,,.‘,”rﬁﬁ-
S S

-y -~ -
.-

Pt
.

-

_—an o

115

coherent phase shift keyed (CPSK) systems with cochannel interference

[Tobin and Yao, 1977], DS/SSMA systems over AWGN channels ([Yao, 1976a},
[Yao, 1976b]l,[Yao, 19771), and PSK systems employing bandpass limiters
[Yao and Milstein, 1978]). 1In all of these studies, either Nth moment
(i.e., kl(z) = zN) or exponential moment (i.e., kl(z) = exp(c(h+z))
where ¢ is a comnstant chosen to optimize the bounds) bounds were used to
bound the probability of error. In the next two sections we shall apply
Nth moment space bounds to bound the probability of error of DS/SSMA
systems operating over specific classes of fading channels.

4.2. Second Moment Bounds

In this section we shall evaluate the second moment space bound on

the probability of error for a DS/SSMA system operating over either a
time-selective or a frequency-selective fading channel. In the following
section we shall generalize the results obtained to Nth moment bounds.

In order to clearly present our results we shall first consider the time-
selective fading channel and later, the frequency-selective fading channel.
At the end of this section we will present various criteria that are useful
in selecting the range of z denoted by I in the isomorphism theorem of the
previous section.

4.2.1. Second Moment Error Bounds for Time-Selective Fading Channels

To simplify the derivation of moment space bounds for the probability
of error of a DS/SSMA system with a time-selective fading channel, instead
of deriving results directly from the doubly-spread fading channel model

as was done in Section 3.2, we shall use the simpler (but equivalent)
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model of a time-selective fading channel developed in Section 2.5.

Hence, from (2.52) and (2.53), the output of the i-th correlation

receiver for a DS/SSMA system with a time-selective fading channel is

given by (4.1), where Di and Ni are given by (3.12) and (3.14),

respectively and F, = Re{?i} and Ii £ ii + ii where

T
F, = /%P j‘o v; B (0)b, (£)de

~ K

A~ A ~ ~

I, = Re{Ii} = RelVBP = Yka,i}
k=1
k#i

A A ~ K ~

I! 2 Re{I!'} = Re{ly5P £ 1! .}

i i k=1 k,i

k#i

and

e

T
A - »
k,i J'O Bk(t-Tk)hk,i(’Tk,C)EXp(J(pk)dt
i, A yexn(t
Ik,i N JI hk,i(Tkst)exP(Jcpk)dt.

In (4.12) and (4.16) Bk(t) is a zero-mean, unit variance complex

Gaussian random process with covariance functions
* = -
E(B, (0BE(9)} = 1, (t-5)

ED, (0B, ()} =0 .

(4.

4.

(4.

4.

(4.

(4.

(4.

12)

13)

14)

15)

16)

17a

17b

)

)
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From Section 4.1 we note that in order to determine second moment

where z is defined as in Section 4.1 and the expectation is over all
bk(t) for k # i, Py and Bk(t) in z conditioned upon all values of bi(t)
of interest. As in Chapter 3, we shall model the phase angles, time
delays, and data symbols for the k-th signal as mutually independent
random variables which are uniformly distributed om [0,2m], [O0,T], and

{+1,-1}, respectively. From (4.12) through (4.16) we find that

E{z2|bi(t)} E{Fiz|bi(t)} + E{Iizlbi(t)}

2 2
E{F,"|b, (0} + E{1;"} (4.19)

where we have used fact that Ii is independent of bi(t) and that the wk
are independent random variables. Because Fi and Ii are identical to
the terms Fi and Ii appearing in Section 3.2, noting that Ii is a zero
mean random variable, the term E{Iiz} appearing in (4.19) is identical
to Var Ii’ previously evaluated in (3.39). Furthermore, using (1l.1)

in (4.12), we find that
. T
F, = JEP b; o Io B, (E)de . (4.20)

Hence using (2.10) and (4.17), we find, as in (3.31), that

T T

E{Fizlbi(t)] = g Yiz J ] ri(e-s)deds

0 0

T
Pyiz Io r, (u)(T-u)du, (4.21)
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which is independent of bi(t). Thus from (4.18), (3.39), and (4.21),

e(z’|b, ()} = E{r, %} + E{1,?)

E{zz} =m

1’ (4.22)

a result independent of the choice of bi(t)'

Once the finite closed interval I of z is known, as required by the
isomorphism theorem, we may evaluate second moment error bounds for a
DS/SSMA system with a time-selective fading channel. Let the distortion
D be defined as the maximum value of the random variable z, i.e.

D = max|z|. (4.23a)

2

By the symmetry of z about zero, the interval 1 defined in the
isomorphism theorem may therefore be taken to be I = [-D,D]. However
by the choice of kz(z) made in Section 4.1 (see (4.6)), we may reduce the
actual range I to the interval I = [0,D] because of the symmetry of kz(z)
about zero. In Section 4.2.3 we will present various criteria for the
actual selection of D.

In Appendix B, a presentation of the methods used to evaluate the
convex hull of the plot of kz(z) versus kl(z) over I is given along with
development of the conditional upper and lower error bounds, conditioned
upon bi(t), through the use of the isomorphism theorem. Once the
conditional error bounds are known, from (4.4), (4.6), and (4.7) we may

obtain bounds on PeU and PeL.

I - o AP R o o 2o
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In Figure 16 we have plotted upper and lower second moment space
bounds on the probability of error for a DS/SSMA system with a time-
selective fading chamnel with a triangular channel covariance function as
a function of the bit energy to noise spectral density. In plotting
Figure 16 we have used a value of normalized distortion of 0.5, where the

normalized distortion D' is defined by

D
t 2
D n (4.23b)

In addition to the upper and lower error bounds, we have also plotted

the Gaussian approximation to the probability of error

G
P, = 1 - @(SNR]._) (4.24)

where SNRi is given by (3.40) for a time-selective fading channel. The
Gaussian approximation is exact when Fi and Ii are Gaussian random
variables [see the definition of SNRi, eq. (3.28)]. Note that for small
values of G/NO, the bounds on Pe are quite tight. However for larger
values of G/NO, the upper bound on P_ becomes practically useless.
Furthermore for larger values of D', larger numbers of users, and
shorter signature sequences, even the bounds for smaller values of

8/No become loose. This phenomenon of second order bounds was also
noted by Yao (1977) for DS/SSMA systems with AWGN channels. To improve
the probability of error bounds, in Section 4.3 we will consider Nth

moment bounds for n 2 4.
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4.2.2. Second Moment Error Bounds for Frequency-Selective

Fading Channels

Following the evaluation of second moment bounds for the time-
selective fading channel as presented in the previous subsection, we
shall now evaluate the second moment error bounds for a DS/SSMA system
employing a frequency-selective fading channel. Once again we shall use
the singly-spread channel characterization of the frequency-selective
fading channel developed in Section 2.6 rather than employ the equivalent
method of developing the frequency-selective fading channel model from
the doubly-spread channel model, as was done in Section 3.3. For a
DS/SSMA system with a frequency-selective fading channel, the output of
the i-th correlation receiver is once again given by (4.1), where Ni
and Di are given by (3.14) and (3.12), respectively. In this case,

however F, and I, are given by F, = Re{F.} and I, £ I. + I! where
1 1 bR 1 1 1 1

- T
F, =WAP v, j_‘@ ai(T)J‘O h, (7;t)dedr (4.25)
~ A - K ~
I, < Re{Ii] = Re{\/3P kilYka’i} (4.26)

k#i
A~ A ~ K ~
I} 2 Re{I!} = RelVZP £ I .} (4.27)
i i k=1 k,1i
ki
and
- T
I, 8 B . b ., +1it)exp(p,)dedr (4.28)
Kyl 4 TR T s Ve T TR SRR '




MR ChaDm on

| - paR Ao

D A S - T/ = =« s s - - 0 o S = = - = = - - = £ - = - - ™

T

ki Io hk’i(fk;t)exp(jwk)dt . (4.29)

H
>

In (4.24) and (4.27) Bk(T) is a zero mean, unit energy (i.e.,

Obz = % in (2.74)) complex Gaussian random process with covariance
functions

E{3, (1BE@)] = g ()6 (r - 9) (4.30a)
and

EQB, (MB ()} =0 (4.30b)

In order to obtain moment space error bounds for the frequency-
selective fading channel case, we must again obtain bounds on the
innermost conditional expectation of (4.6) and (4.7) through the evaluation
of my 4 E{zzlbi(t)]. For the time-selective fading channel case, it was
found (see (4.20) above) that Fi was dependent upon the data bit bi,O
only. Hence conditional error bounds were needed for only two data
bit values: bi,O = +1 and bi,O

for the frequency-selective fading channel case, conditional error bounds

= =1. From the form of (4.25), however,

are needed for an infinite number of data bit patterns because the
frequency-selective fading channel exhibits memory. To display this
dependence of Fi on all preceeding and successive values of data bits,

using (1.1) and (3.10) in (4.25), we find that

[--] TQ
Fo=vBB oy [ B[ I b Ri(e-T-sDa (e-T)ay (e)dedr

-0 0 L=-> 4
® r‘(jﬂ')T .
= VBP v, j’i-a . By, i Ry (T=iD) + by R (r-iDldr,  (4.31)
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where Ri(T) and ﬁi(T) are defined by (1.7) and (1.8), respectively.
Clearly, we cannot evaluate an infinite number of moment space bounds

as required by (4.6), (4.7), and (4.31). Hence we must truncate the
number of preceeding and successive data bits required to evaluate (4.6)
and (4.7) in some sensible manner. WNote that this corresponds to the
problem of evaluation of the probability of error of a baseband PAM
system with intersymbol interference (e.g., see [Lucky, et. al., 1968]).
In Section 3.3 we assumed the selectivity of the channel is such that only
the two adjacent symbols need be taken into account in evaluating the
performance of a DS/SSMA system with a frequency-selective fading

channel., If we also apply this constraint to (4.31), (4.31) reduces to
. T T
F o= JEP Y; J-‘T B, (™) fo h, (T;E)dedr . (4.32)

Note that the constraint on Bi(T) implied by (4.32) is a stronger
constraint than that made in (3.51), since the former is actually a
constraint on the range spread of the channel [Van Trees, 1971], while
the latter is a constraint on the selectivity of the channel. 1In a

simi lar manner, (4.28) becomes

T T
~ A .
Ly * J:T B (™) j‘o By ; (Tich T s D exp(fpy )dedr (4.33)

Thus for the frequency-selective fading channel case, we need to
evaluate the conditional bounds on the probability of error for 8
different sets of the bit pattern (bi,-l’bi,O’bi,+1}‘ Each evaluation

. 2
of the conditional error bounds requires evaluation of m, = E{z lbi(t)}
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for one of the eight bit patterns. Following the same reasoning given -
for (4.18), E{zz|bi(t)} is given by (4.18), where for the frequency-
selective fading case, E{Iiz} is given by Var Ii in (3.62). Using (2.10)

and (4.30) we find that E{Fizlbi(t)} is given by (3.54). Thus we can ..

" Ir.—vvrv—‘H,'! D a4 e o o

evaluate my for each of the eight sets of bit patterns.
Using the methods of Appendix B, we have evaluated the second moment

space bounds for the probability of error of a DS/SSMA system with a

-
)

frequency-selective fading channel having a triangular channel covariance

function and have plotted the results as a function of é'/NO in Figure 17.

In plotting these results we have used K = 2 users employing signature

sequences of length 127 and have assumed a normalized distortion of

D' = 0.5. In Figure 17 we have also plotted the Gaussian approximation
(4.24) to the probability of error, where SNRi for the frequency-
selective fading channel is given by (3.63). The comments made in the
previous section on the looseness of the second order moment space bounds
apply here also. 1In Section 4.3 we will consider higher order moment
space bounds in an effort to tighten the bounds on the probability of
error.

4,2.3. Selection of the Normalized Distortion

Up to this point we have not given any consideration toward selecting
the value of the normalized distortion D' to be used in evaluating the

9 moment space bounds for a DS/SSMA system operating over a given fading

(R arn Sihaa. alh and ook Jan et aad o 4
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channel. From the isomorphism theorem of Section 4.1 and the determina-

tion of moment space bounds given in Appendix B, such a selection of a
particular value of D' is required before moment space bounds can be
obtained. In this subsection three possible criteria are given for
selection of D'.

At first examination, it may appear that determination of D' is
straightforward from the definition of D' given by (4.23). Further
examination of z however reveals that because we have assumed Bk(T;t) to
be a complex Gaussian random process, the '"tails'" of Re{Bk(T;t)} are
infinite and hence D' = ». The isomorphism theorem requires, however,
that D' be finite. Our goal then is to sensibly choose a finite D'
in such a manner that truncation of D' will only marginally affect the
actual bounds.

The first approach will be termed the distribution function method.
Basically this method assum¢ a priori knowledge of the distribution
function of z in order to sensibly truncate the "tails" of z. One method

of truncation is to simply assume that the tails of z may be neglected if

pr{z > p} < %5 P, (4.34)

e

where Pe is the probability of error. For example, if z is ~-sumed to
be a zero mean Gaussian random variable with variance 02, for L the
order of 10-5, D should be selected so as to satisfy

D 2 4.753423 ¢ (4.35a)
or

D' = 4.753423 % ) (4.35b)
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Of course the major drawback of this method is that we have also assumed
Pe could not be evaluated directly, which would be the implication if
the distribution function of z were known (see (4.1)). Still, this
method merits consideration for cases in which the moment space bounds
are exceptionally tight and an approximating distribution function for z
yields results for Pe which lie between the upper and lower bounds.

A second approach utilizes Chebyshev's inequality to obtain a finite

value for D'. By Chebychev's inequality we have that

E{zn}

Pr{|z| > D} < (4.36)

Since we have assumed that the moments E{zn} can be evaluated, (4.36)
may be used in a manner identical to (4.34) to bound D'. As an example
5

of this, for the second moment case for values of Pe on the order of 10 ,

we choose D to satisfy

-6 02
10 ~ =2 = (4.37)
D
or D' = 103 % , where 02 = E[zz}. Assuming that higher order moments of

z can be evaluated, we may then use (4.36) to further reduce this
initial choice of D'

A third approach to choosing D' is based on the actual DS/SSMA
system dynamic range. Because any physical system must have a finite
dynamic range, D is automatically limited to the dynamic range of the
DS/SSMA system. If we use this approach to limit the range of D', we

must have prior knowledge of the actual system dynamic range.

e e e . - A aAa i a i ala -— - 5 — = A -

e =
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Ideally we would, of course, like to choose D' as large as possible
so that the effects on the probability of error bounds of truncating D'
can be minimized. TFortunately, as will be seen in the next section,
for Nth moment space bounds, the probability of error bounds are
relatively insensitive to the choice of D', for values of D' greater
than a certain minimum value. For the remainder of this chapter we
will compute moment space error bounds with the assumption that D' has
been computed using one of the three methods outlined above.

4.3. Nth Moment Bounds

In this section we shall consider Nth moment bounds for n 2 2. Our
goal here is to obtain tighter moment space bounds on the probability of
error of a DS/SSMA system with a fading channel than could be obtained
using the second moment bounds of the previous section.

4.3.1. Fourth Moment Bounds

As noted in Section 4.1, in order to evaluate the Nth moment space
bounds on the probability of error of a DS/SSMA system with a fading

channel, we first need to evaluate the moment

=]
(]

E{z"[b, (0]

' n
(4.
E{(F, +1,1%b (D)} (4.38)
for all data bit »atterns bi(t) of interest. For the fourth moment space
bound, we therefore need to evaluate

4 _ 43 2.2 3.4
E{{F,+I, 1 |b, ()} = E{F, +4F "I +6F "I “+4F I °+1, b, (0} (4.39)
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In the following we shall assume that the fading processes Bj(T;t)

and BkCT;t) are independent for j # k. Then from (3.13), (3.15), and

(3.16), (4.39) reduces to

4 4. 2.2 _ 4
E{{F.+I.1"|b, (©)} = E{F, +6F, "I “+I, |bi(t)}

4

il

E{Fi4|bi(t)}+6E{Fizlbi(t)}E{Ii2}+E{Ii (4.40)

where we have used the fact that Ii is independent of bi(c) and that
Bk(T;t) is a zero mean process. The middle term of (4.40) has been
previously evaluated in Sections 4.2.1 and 4.2.2 for time-selective
fading channels and frequency-selective fading channels, respectively.
Hence in this section we shall concentrate on evaluating the first and
last terms of (4.40). Recognizing that Fi = Re{%i} and Ii = Re{ii},
in order to evaluate the fourth moments of these quantities, we shall

need the following identity which may be derived directly from (2.10):

8Re (w)Re(x)Re(y)Re(z) = Re(wxyz)+Re (w*x*yz)+Re (wxy*z)
+ Re(w¥*x*y*z)+Re (w¥xyz)+Re (wx*yz)+Re (w¥xy*z)

+ Re(wx*y*z), (4.41)

for complex numbers w, x, y, z.

From (4.40), (4.41), (3.15), and (3.16), we note that the fourth
moments of Fi and Ii will be a function of the fourth moments of Bk(T;t),
for 1< k< K. To evaluate the fourth moment of Bk(T;t) we shall make

use of the following theorem due to Reed (1962) and Miller (1968).
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Theorem: Let x(t) be a zero-mean, complex Gaussian random process with

2 e s i..t.x "

covariance functions
E{x*(t)x(s)} = R(t,s) (4.42)

h E{x(t)x(s)} = 0 (4.43)

Suppose X = x(tn) for n € {1,2,...,N} are samples from x(t).

h a.) If s # t, then

E{x; x; ...x*m X)X eeeX }=o0 (4.44)
1™ s LM e

where m and nj are integers from the set {1,2,3,...,N}.

) asll e e e
e

b.) If s = t, then ==

b
+

Elx* x* ...x* x x ...x } =
m, m, m, n; 0, .

VT

LElxx x JElxx  x Ll Elxx x ] (4.45)
T m(1) M1 m(2) 2 () "t
where T is a permutation of the set of integers {1,2,3,...,t}.

A proof of this theorem for stationary random processes was origirally given

in [Reed, 1962]; Miller (1968) subsequently generalized the theorem to
r nonstationary, non-zero mean random processes. A discussion of both of

these results may be found in [McGee, 1971].

E,, Hence from (4.44) and (4.45), the fourth moments of a zero-mean -
E complex Gaussian process B (t) satisfying (4.42) and (4.43) are
ii E{B*(t)B*(s)B(t")B(s")} = R(t,8)R(L",s) + R(t,s")R(t',s) (4.46) _
" E{B(t)B(s)B(t")B(s") = E{B*(t)B(s)B(t")B(s")}

= E(B*(t)B*(s)B*(t")B(s")} =0 . (4.47)
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For the time-selective fading case, from (4.41), (&4.46), (4.47),
and (4.20) the conditional fourth moment of Fi conditioned upon bi(t)

is given by

E{FiQ]bi(t)} 3 2 4Re{J‘ f f f r (t- s)r (u-v)dtdsdudv}

3{var Fi]2 (4.48)

where Var Fi is given by (3.31) and we have used (4.17).
In a similar fashion, for the frequency-selective fading case

4
E{Fi lbi(t)} is given by

2 ¢y, Re{f J‘ gmg(wf I II

4
E{F, |bi(t)}

fi(T,T;t,s)fi(T',T';t',s')dtdsdt'ds'deT'}

3(var F,1° (4.49)

where Var Fi is given by (3.54). 1In deriving (4.49) from (4.32), we
have used (4.41), (4.46), (4.47), and (4.30).
In order to evaluate E{I4} appearing in (4.40), assume, without loss

of generality, that user 1 is the i-th user (i.e., i = 1). Letting

81 + %

Ii i i (4.50)

where ii and ii are given by (4.13) and (4.14), respectively, for the
time-selective fading channel and by (4.26) and (4.27), respectively,

for the frequency-selective fading channel, we find that
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by _ o3 b o 3a, A 2.8,.2 s a3 A
E{Ii 1 E{Ii + 41710 + 61, T(I)7 + 4L (1)) + (1)) }

_n b a2,8,.2 a4
= E[Ii + 61, (Ii) + (Ii) 1 (4.51)

where we have used the zero-mean condition on Bk(T;t) for the second step.
Noting that the last term of (4.51) has been previously evaluated in
[Yao, eq. (14)-(18), 1977], we shall concentrate on evaluating the first

two terms of (4.51). Let
A
Loy~ V&P YkRefik,i} (4.52)

where ik i is defined by (3.16). Then
" K

Ii = X I
k=2

K,i° (4.53)

which follows from (3.15). Using (4.53) in (4.51), we see that
K

“-eliz 1 1%

k=2

e{1; K,i)

K K K K

E{: = © Zr1 .1, .1 .I, .
{h=2 =2 k=2 £=2 h,i"j,ik,i74,1

}

K-1 K
14}-+6 £ eln .%1..%

£
T 1 1,
k=2 jek#l ob ded

k=2

k,

K 4 K-1 K
T E{1 }+6C z Ef1

» 2 4 (4.54)
k=2 k=2 j=k+1

k’l J,1

where we have used the independence of Bk(T;t) for 2 € k< K and the

fourth moment properties of Bk(T;t).

.
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LC '_ For the time-selective fading case, from (4.52), (4.15), (4.17),
¥ &
3
(4.41), (4.46), and (4.47), E{Ik i4} is given by
b

T T T T

4y 3 2. 4 n ) ‘
E{Ik,i } = 4 P Yie fo JO IO fo rk(t S)rk(u-v)E{fk,k,i(Tk’Tk’t’S)

-

'fk’k’i(Tk,Tk;u,v)}dtdsdudv, (4.55)

where the expectation is over bk(t) and T From (3.10) we see that in

K

— order to evaluate this expectation, we need to evaluate

- % fz ak(t—Tk)ak(s-Tk)ak(u-Tk)ak(v-Tk)E{bk(t-Tk)bk(s-Tk)bk(u-Tk)bk(v-Tk)}di.

hid (4.56)
Noté that (4.56) is a function of t, s, u, and v and consequently may
only be evaluated numerically for given values of the four parameters.

I’ Furthermore, unlike previous "moments' of ak(t) that we have encountered
up to this point, evaluation of (4.56) requires knowledge of the actual
sequence ak(t) rather than just its aperiodic corfelation functions.

[: Consequently, the objective of applying higher order moment space bounds

. to bound Pe becomes questionable unless (4.56) can be evaluated in some
manner. One such approach is to simply bound the expectation appearing

. in (4.55) so that bounds on E(Ik,iA} may be obtained. WNoting that a
"worst case" bounding approach is to assume that the expectation appearing
in (4.55) is upper bounded by 1 and lower bounded “y 0, (4.55) becomes,
using (3.30) and (3.31),

0, best case
= (4.57)

3[var Fi]2, worst case




W WA T e e e

M N - i A —_—— CERC . ” ) A v B

134

where Var Fi is given by (3.31). In a similar manner, the second term of
(4.51) may also be bounded, and hence, from (4.40), (4.48), (4.51), (4.54),

and (4.57), upper and lower bounds on m, appearing in (4.38) may be

1
obtained. If we use these upper and lower bounds on my to evaluate upper
and lower moment space bounds on Pe through use of the methods described
in Appendix B, however, we find that the results obtained are actually
slightly looser than those obtained using the second moment space bounds
described in the previous section. This looseness of the higher order
bound may be attributed to the crude bounds on the expectation appearing
in (4.55).

For the frequency-selective fading case, from (4.52), (4.30), (4.33),

(4.41), (4.46), and (4.47), E{L_ i‘*} is given by

4 3 2 4 T T T T T T
E(r, ;7 = £ Py, [T J:Tsk(f)gk(c)j‘o j'o j’o IOE{Fk,k’i(Tkﬂ,Tkﬂjc’s)

'Fk’k’i('rk+c,Tkwju,v)}dtdsdudvd'rdd. (4.58)
As was the case for the time-selective fading channel, the expectation
appearing in (4.58) may not be easily evaluated analytically. Consequently,
once again a simple bound on this expectation may be made in an effort to
bound E{Ik’ia} and subsequently m . However, it was found that the
resulting bounds on Pe obtained through the use of the bounds on m1 are

actually looser than the second order bounds obtained in Section 4.2.

~ -
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4.3.2. Higher Moment Bounds for DS/SS Communications via

Fading Channels

In the previous subsection we noted that for the cases in which
multiple users are present, fourth moment space bounds on the probability
of error of DS/SSMA communications via a fading channel cannot be readily
evaluated. This observation may, in fact, be generalized to Nth order
bounds for n > 2, since evaluation of higher order bounds will require
evaluation of higher order "moments'" of the signature sequences. For a
single user system, however, the above comments do not apply, since, as
noted in the previous subsection, we are able to evaluate the fourth
moments of Fi for both time-selective and frequency-selective fading
channels. In this subsection we shall consider moment space bounds for
single user DS/SS systems with fading channels.

To begin with, note from (4.20), (4.31), ani (4.32) that F; = Re(F]
is conditionally Gaussian, conditioned upon bi(t)' This follows from the
observation that the real part of a complex Gaussian random variable is
Gaussian. Furthermore, throughout all of our analysis presented to this
point, we have assumed that the fading process B (t;t) is independent of
the additive noise process n(t). Hence for a single user DS/SS system
with either a time-selective or a frequency-selective fading channel, we
may write an exact expression for the probability of error. For a single
user DS/SS system, the output of the i-th user's correlation receiver

is given by

2, =N, +D, +F,. (4.59)
1 1 1 1




e
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The probability of error at the decisi

(4.2). Letting h be defined as above,

pr{z, > Olbi(t),bi’o

while

pr{z, < Olbi(t),bi,o

on instant £t = T is then given by

we find that

h
-1} = Q(g;)
h
+1} = G

(4.60)

(4.61)

where 0. and 0, are the square root of the sum of the noise variance plus

1 2

the conditional fading variance, i.e.,

Q
il

2
(% NT + E{F, lbi(

2
and g, = [% NOT + E{Fi |bi(

For the time-selective fading channel, from (4.21), (4.2) and (4.59)-(4.63),

= %
£),b; o = -1}

_ %
t)bi’o = +1}1% .

(4.62)

(4.63)

the probability of error at the output of the i-th correlation receiver is

given by

No Zyiz T
P =Q(zz + — r,
e 28 T2 o &

-1
(u) (T-u)du] ?)

(4.64)

where ri(u) is the covariance function of the i-th user's fading channel

process. The corresponding expression for probability of error for the

frequency-selective fading channel is

2y, 2

NO i T “
2, = 305+ 3,001
T 0

No Zyiz T R
*Rg + —3 fosicr)[k
T
2

No 2v;" T .
* g+ —5 [ 5 (MOIR
T 0

2 2 -
; (M) + R, (1)]dr) %)

2, 1%
LM+ R (M1

L) - R (M1%ar™),

(4.65)
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Ada.s

where we have used (3.54), (4.2), (4.59)-(4.63), and where gi(T) is the
covariance function of the i-th user's fading process.
Because we can evaluate the probability of error exactly for the
L single user DS/SS case, there appears to be no need to evaluate moment
space bounds on the probability of error. Nevertheless, it is of interest
to evaluate moment space error bounds in this instance since the results

are useful in evaluating the performance of the bounds themselves for

related DS/SSMA system problems. Two such examples of related problems

are DS/SSMA systems with faded multiple-access interference and with

non~-faded multiple~access interference. In the following we will evaluate
Nth order moment space bounds for a DS/SS system in the presence of a
fading channel.

In the previous subsection we presented methods for obtaining fourth

moment error bounds for a DS/SSMA system with faded multiple-access
L interference. For a single user system, these same methods apply except

that the interference term Ii is neglected in all of the calculatioms.

From (4.38), it follows that in order to evaluate Nth moment bounds

on Pe’ we need to evaluate
1

n
: m = E{[F,] |bi(t)] . (4.66) 3

Two approaches are available for evaluating (4.66). The first requires
3 : derivation of an expression for the product of real parts of complex {
numbers in terms of sums of real parts of products of complex numbers

and then applying (4.44) and (4.45) to this result. This is the approach

| ¥ VO Y

f : taken in the previous subsection. The second approach makes use of the
r

Ty

PSP U S T ST S S S S = A B . S amad I S PO S S . PR




138

fact that Fi is conditionally Gaussian, as noted above. To use this

=

second approach, we will need the following result from [Wang and

Uhlenbeck, 1945] regarding moments of real multivariate Gaussian

E distributions:

Theorem: Let Xn = [xl,xz,...,xn} have a zero-mean multivariate Gaussian

]

Lahou ob ¥
. a

distribution with covariance E{xixj} = Rij'
‘ (i) Then for m odd:
b

3

[ E{xi Xy X eeX } =o. (4.67)

12153 m

(ii) For m even:

.
Ein X, X, <X, } .

; ZR. . R, . ... . (4.68)
i 2 T2 13 m Jydz 3334 Igeidn

where the sum is taken over all possible ways of dividing the m points

into m/2 combinations of pairs. The number of terms in the sum is equal

to

1+3%5¢ %+ (m=3) (m-1) . (4.69)

From (4.66), (4.68), (4.69), and the observation that Fi is conditionally

Gaussian, we have the following result: for n even

m = E{(F,1%[b (O)} = 1-3-5--°(n-3)(n-1)[E{Fi2(bi(c)}]“/2 . (4.70)

Hence using (4.70), (4.2), and the procedures given in Appendix B, we
may evaluate the Nth moment space bounds on the probability of error of

a single user DS/SS system with a fading channel.
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[ In Figure 18 we have plotted upper and lower sixth moment space

bounds on the probability of error as a function of /N, for a single

0

user DS/SS system with a time-selective fading channel. In plotting

Figure 18 we have assumed that the fading channel has a triangular

: : covariance function with correlation duration 10TC and Yiz = 0.05. Also
:1 shown in Figure 18 is the exact probability of error for this system which
fil was evaluated using (4.64). For the purposes of this plot we have
[ » T_ assumed a normalized distortion of D' = 1.0 in evaluating the moment space
t] bounds. WNote that the moment space bounds on the probability of error are
*ﬁ! - quite tight for this particular set of channel specifications. From the form
= of (4.64) we see that Pe for the time-selective fading channel is independent
E of the choice of signature sequences used. Following a line of reasoning
b '. identical to that given in Section 3.4 in discussing the time-selective
g fading channel, we may conclude that our results are valid also for a
PSK system using a Rician fading channel.
F C In our discussion in Section 3.3 we noted the relative importance
s of frequency-selective fading channels as compared to time-selective
F fading channels for SSMA systems. For the remainder of this subsection
*. we will present results only for a single user DS/SS system with a
t - frequency-selective fading channel. In Figures 19 and 20 we have
i plotted eighth moment bounds on P, versus é‘/N0 for a DS/SS system with
Yi ’ a frequency-selective fading channel having a triangular channel
{77 covariance function for two values of Yiz- In plotting these figures
7
&
-
¢
L
¢
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we have assumed a correlation duration of 20TC and a normalized distortion
of D' = 1.0 and have used an m-sequence of length 127 with its LSE/AO
shift register loading. Note that as Yiz is increased from 0.1 to 0.5

the moment space bounds become less tight. This looseness in the bounds
is to be expected for large values of Yiz because of the strong dependence
of m, on Var Fi (see (4.69)) and consequently on the parameter Yiz

(see (3.31) and (3.54)).

In order to compare the tightness of various orders of bounds, in
Figure 21 we have plotted fourth moment, sixth moment, and eighth moment
space bounds on the probability of error as a function of 6/NO for the
same DS/SS system parameters and channel characteristics used in plotting
Figure 19, Generally speaking, for values of 6/No less than 10 dB,
fourth moment bounds are tighter than the higher order bounds. For larger
values of 5/No, though, only the eighth order bounds do not "level off."
This phenomenon, first observed by Yan (1975), may be simply explained
using the results of Appendix B. In Appendix B we note that for values
of /N

less than a certain critical value SNR the plot of kz(z)

0

versus kl(z) is convex N for any value of D'. To evaluate PeU and Pe

C’
L

for SNR < SNRC, we need to evaluate m, = E{Fin|bi(t)}, take the nth root

1
of m; and then use this result to find the upper and lower bounds on Pe
by the equations
U 1/n
P, = Elk,(m )} (4.71)
k,(D") - k,(0)

L _ 2 2 1
e TEE @) - K@ M) RO

P (4.72)
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where the expectation is over bi(t)' From (4.69), however we note that

1< 93 < 915 < 8105 (4.73)

and consequently that
m, <m, <m < my (4.74)

where

L = [E{Finlbi(t)}]l/“ : (4.75)

n

m

Using (4.74) in (4.71) and (4.72), we see that for SNR < SNRC, the

lower order bounds on Pe are actually tighter. We may conclude that
unless a "leveling-off'" effect is observed, n-2 order bounds are tighter
than n order bounds.

In the previous section we commented that for fading channels, Nth
moment space bounds are somewhat insensitive to the exact value of the
normalized distortion being used to evaluate the bounds. To illustrate
this insensitivity of the bounds on D', eighth order moment space bounds
were evaluated for a DS/SS system with a frequency-selective fading channel
for a correlation duration of ZOTC, YZ = 0.05, and for three values of D'.
As D' was varied from 0.5 to 10.0, the error bounds varied by less than

5 x 1072

%, for the case considered. Thus in most cases of interest,
we may apply any of the methods suggested in the previous section to

bound D' and still obtain approximately equivalent error bounds.

PTG PN

e

A

RO {

PR

P SV

“

-y

N

Lk




- rrrrfvy‘ LR R S e e

146

CHAPTER 5
SUMMARY AND CONCLUSIONS

This study has investigated the problem of analyzing the performance
of a biphase DS/SSMA system operating over a fading channel. The
receiver model used throughout this analysis has been a correlation
receiver; a receiver structure which is not optimal for signaling in the
presence of multi-user interference and fading but one that is typically
used in implementing DS/SSMA systems. Two measures of system performance
were considered: average signal-to-noise ratio and average probability of
error. A third system performance measure considered for DS/SSMA systems
operating over AWGN chammels -- worst case performance -- was not treated
here since it is easily shown that for a channel undergoing any degree
of fading, the worst case probability of error is always % for equal
a priori probabilities of the transmitted data bits.

The study began with a review of various models of fading channels.
From physical and phenomenological considerations we have shown how
fading may be modeled as a complex Gaussian random process. With this
assumption, a general fading channel model was developed which could be
modeled as a time-varying linear filter whose time-varying impulse
response is the fading process. Statistical phenomena observed
for actual radio channels led us to consider a specialization of the
general fading channel model known as the WSSUS channel. This channel

model was characterized by the fact that it is the simplest channel

model of physical interest exhibiting both time- and frequency-selective

-
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behavior. A review of various techniques for characterizing the WSSUS
channel in terms of observable effects was presented next. We then noted
that by making certain additional assumptions about the covariance
functions of the WSSUS doubly-spread channel, the WSSUS channel further
simplified to two types of singly~spread channels -- time-selective
fading channels an. frequency-selective fading channels -- and to a channel
known as a nondispersive-fading channel. In discussing these various
channel models we noted the importance of assuming a specular-plus-diffuse
fading channel model as a typical fading channel model over which DS/SSMA
comminications could be conducted. As was noted in Chapter 3, a channel
exhibiting only diffuse fast fading renders a DS/SSMA system useless due to
the lack of phase-reference needed for coherent communications.

After a review of fading channel models we then considered analysis
of the average signal-to-noise ratio of a DS/SSMA system communicating
over a WSSUS Rician fading channel. It was shown that with such a
channel, the output of the correlation receiver matched to the i-th user's
code waveform consisted of four components: the i-th user's direct (non-
faded) signal, a faded version of the i-th user's transmitted signal, a
multiple-user interference term consisting of direct and faded signal
components, and an AWGN term. Treating the data symbols, phase shifts,
and time delays of the other K-1 users as random variables with given
distribution functions, we then defined the average signal-to-noise ratio
in terms of expectations of the four components at the output of the

correlation receiver. In general it was found that the resulting
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expectations could not be evaluated directly in terms of the correlation

SN N a4 v
A el

functions of the fading channel unless certain additional assumptions

about the covariance function of the channel were made. Hence, we

Ty

considered the two singly-spread channels -- time-selective fading

channels and frequency-selective fading channels. For both of these

subclasses of WSSUS channels we were able to evaluate expressions for

nl the average signal-to-noise ratio in terms of the covariance function of

4

the fading channel, the continuous-time partial crosscorrelation functionms
of the K users' code waveforms, and the AWGN spectral density. For
specific channel covariance functions, the resulting expressions become
functions of the discrete aperiodic autocorrelation functions of the

code signature sequences. A parameter of the channel covariance functiom

known as the correlation duration was defined and was then used as the
independent variable in plotting SNRi for both time~ and frequency-
selective fading channels. It was found that the general trends of the
plots could be explained by exploiting the duality existing between the

two singly-spread channels as well as by noting the effect of the

integrator in the correlation receiver on the performance of these two
channels. We noted that most fading channels occurring in practice exhibit
some degree of frequency-selectivity and that this phenomenon, together with
the observation that SSMA systems occupy very large bandwidths, led us to
conclude that a frequency-selective fading channel is a more realistic fading

channel model for DS/SSMA systems than a time-selective fading channel model.

-
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We then examined the performance of single user DS/SS systems over
both classes of singly-spread channels and compared this performance
to that of a PSK system operating over the channel. We found the DS/SS
system performance identical to that for a PSK system for a time-selective
fading channel, but the DS/SS system outperformed the PSK system for a
frequency-selective fading channel. This performance difference in the
latter channel may be attributed to the frequency-diversity achieved
by the DS/SS system through the use of a signalling set with an improved
autocorrelation function.

By randomizing the code signature sequences in the DS/SSMA system
we were able to obtain approximate expressions for the average SNR which
were independent of the actual choice of signature sequences used. These
expressions are therefore useful in the preliminary design of a DS/SSMA
system using a fading channel. It was found that for maximal connected
sets of m-sequences employing either LSE/AO or AO/LSE shift register
loadings, the difference between the actual SNR and the approximate value
of SNR was negligible.

After considering SNR as a performance measure we next considered
average probability of error as a measure of system performance. At the
outset, it was noted that due to the complicated form of the resulting
expression for the average probability of error, it would be desirable to
obtain bounds on the probability of error. Because of the success of
its use in bounding error probability in other types of digital communi-

cation systems, the moment space bounding technique was used to obtain

l
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bounds for DS/SSMA communication via fading channels. Based on results
in the published literature, we chose to use Nth moment space bounds,
bounds which require evaluation of the Nth moment of the sum of the faded

version of the i-th user's transmitted signal plus the multiple-access

interference. For the second moment bound, we were able to evaluate the
probability of error bounds using results from the analysis of the signal-

to-noise ratioc at the output of the i-th user's correlation receiver. It

|

was noted that, in general, the second moment error bounds were too loose
for practical application. Hence, we then considered higher order moment

bounds in an effort to obtain tighter error bounds. For n > 2, however, —

I..

L4
S

we were unable to directly evaluate the nth moment of the sum of the faded

version of the i-th user's transmitted signal plus the multiple-access

interference and consequently we were unable to obtain tighter error bounds. '?
It should be noted that much of the difficulty in applying the moment space

bounding technique to DS/SSMA communications via fading channels is due to

MO~ AOANGaN

the relative complexity of the singly-spread fading channel model being used

throughout this study. We conjecture that for simpler channel models, such
as the recently developed three path fading channel model mentioned in
q Chapter 2, it would be possible to evaluate moment space bounds on the
probability of error. Of course, such a channel model is less general than

the singly-spread channel model.

q In contrast to the results obtained for the multiple-user case, we

E were able to directly evaluate the probability of error for a single-

:

- user DS/spread-spectrum system for either a time-selective or a frequency-

;_
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selective fading channel. To investigate the performance of Nth moment
space error bounds for fading channels, we considered the single-user
DS/spread-spectrum system and evaluated the fourth, sixth, and eighth moment
error bounds. We found that for small values of SNR, the lower moment error
bounds yield the tightest bounds, but for larger values of SNR and D', only

the higher moment bounds yield good results.
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APPENDIX A
AVERAGE SIGNAL-TO-NOISE RATIO RESULTS FOR LARGE VALUES OF THE
FADING POWER TRANSMISSION COEFFICIENT

In Chapter 2 we made mention, in passing, of the recent development
of a three-path fading channel model for line-of-sight microwave channels
([Rummler, 19781, {[Rummler, 1979]1). In the literature describing this
channel model, mention is made of several actual channels exhibiting
fading to the extent that the fading power transmission coefficient Y2 for
these channels is on the order of YZ = 0.5. In Chapter 3, we have presented
signal-to-noise ratio data for channels in which YZ‘S 0.2, primarily for the
reason that it is believed that the effects of the synchronization sub-
system on the communication system performance are no longer negligible
for values of Y2 > 0.2. For line-of-sight applications, however, other
techniques (e.g. atomic clocks, auxiliary synchronization channels) may be
used to obtain synchronization information so that reliable comﬁunications
may be achieved. In this appendix we present additional SNR data for
channels in which Yz > 0.2.

In Figure Al we have plotted SNR as a function of the correlation
duration of the channel for a time-selective fading channel with a
triangular covariance function. 1In plotting Figure Al we have used a

maximal connected set of six m-sequences in their LSE/AD phases (see

Chapter 3 for details). 1In Figure A2 we have plotted the corresponding
results for a frequency-selective fading channel with a triangular

covariance function. We see from these two plots that the increased

Mk 4 S B 0 Sl e oy

é‘ amount of fading simply reduces the average SNR.
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In Figure A3 we have plotted SNR versus correlation duration for
single user DS/spread-spectrum and PSK systems operating over a frequency-
selective fading channel with a triangular correlation function for two
values of YZ. Note that for these larger values of Yz, the SNR at the
output of the PSK system is so small as to make the PSK system virtually
useless, while for values of correlation duration greater than 60 Tc, the
degredation of the DS/spread-spectrum system from the ideal AWGN channel

signal-to-noise ratio is less than 0.5 dB.
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APPENDIX B
Nth MOMENT SPACE BOUNDS ON THE PROBABILITY OF ERROR

B.l Introduction

In Chapter 4 we discussed the isomorphism theorem regarding relation-
ships between arbitrary moments of random variables and showed how this
theorem could be used to obtain bounds on the probability of error of a
DS/SSMA system with a Rician fading channel. 1In using this theorem, we
derived the Nth moments of the fading terms and then proceeded to plot the
probability of error bounds directly. In this appendix we will derive

analytical expressions for bounds on Pe from knowledge of the Nth moment

cx

of the fading terms and the normalized distortion D'. The resulting
expressions for probability of error bounds were used in Chapter 4 to plot
the actual error bounds. Many of the results to be presented were previously »;
obtained by Yan (1975) but have been refined here for use with fading .
channels. -
To begin with, instead of concerning ourselves with the details of a o
DS/SSMA system with a fading channel, we shall use a simpler (but more general) .
a model of a digital communication system with interference and noise in deriving
E. the moment space error bounds. The modifications necessary to treat DS/SSMA .
r systems with fading channels are straightforward and will not be discussed .
i here (see Chapter 4). For a transmitted data bit ao, assumed to take on
Elﬁ value {+1,-1} with equal probability, the received signal at the output of the =
? | receiver at the decision instant t = T is given by
i. y = aoh +z+4+n (B.1)
' & ~
r - where h may be thought of as the response of the channel, sampled at time
; | t = T due to the transmission of data bit ao, 2 is the interference component,
o
- N
E;;~ PR : e N U S . J
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and n is an additive Gaussian noise component with variance ¢ - The inter-

ference component is assumed to have an unknown distribution function with
finite distortion D such that

|z| = D. (B.2)

The probability of error at the output of the receiver is given by

P, = er{y < 0|ao = +1} + 3 pr{y 2 o[ao = -1}
= E{%Q(h:—z) + %Q(t%z)} (8.3)

where the expectation is over the interference term z.

To derive Nth moment space bounds on the probability of error of this
digital communication system, we will let kl(z) = 2" and let kz(z) =
-gl-Q(hcri) + %Q(I—EE). Furthermore, we will assume that the moment
m, 4 E{kl(z)} is known. Noting that m,

isomorphism theorem of Chapter 4 to derive bounds on Pe. In order to apply

= E{kz(z)} = P_, we may use the

this theorem, however, we first need to evaluate the convex hull X of the
curve & of kz(z) versus kl(z). From calculus, we have the following results:
( i) A function £(x) is convex U iff £"(x) = 0.

(ii) A function f(x) is convex N iff £"(x) < O.

Hence, in order to evaluate the convex hull of ¢, we need to evaluate the

first and second derivatives of r(z) 4 kz(kl(z)). Simple differentiation
2 2

shows that _-2) _(h+z)
1 e 262 -e 262 A u(z)
r'(z) = ) = K o (B.4)
ZBQJE; z z
rn(z) = ;_< { zu (z)z;itn'l)u(z) } (B-S)
z
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where
k8 [2n0/2m) 7t (B.6)
and
_(h=2)? (ez)?
2 2
u(z) Q e 20 -e 20 . (B.7)

1f we collect identical terms appearing inside the brackets of (B.5), r'(z)

becomes
£"(2) = P(z)F(z) (B.8)
where _gh+z}2
K 202
P(z) = ool © (B.9)
no z
and 2zh
2
F(z) = [zh-+22-+(n-l)c2] +e @ [zh-zz-(n-l)czl . (B.10)

An alternative form of writing F(z) is to expand the exponential term into
a Taylor series expansion, multiply by the appropriate powers of z appearing
within the square brackets and then collect identical terms. If we do this,

(B.10) becomes

F(z) = Fl(z) + Fz(z) (B.11)
where
h222
Fl(z) = 2(2-n){zh + > ] (B.12)
c
, . ( Zgh )k h
o]
Fz(z) = 2 k§1 Y C(k,n,g) (B.13)
2
C(k,n,g-) = )-1) + !‘-5 [%{_ﬁ—i—%‘;—g%] . (B.14)
o]

As we will see in the next two sections, depending upon the value of n, either
(B.8) and (B.1l0) or (B.8) and (B.ll) is more convenient to use 1 .valuating

the convexity of C.

[,

[
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Finally we will need to know the following results on the limiting

values of r'(z) and r''(z):

r'(z) 20 for zz 0 (B.15)
lim r'(z) = 0 (B.16)
z-®
- h n? 3 -0’ /20°
LT 4 (=5 -31e n =2
{ 6no oy2m g
lim £'(z) =< (B.17)
z= 0 ;

All of these results may be derived from the defining equations for r'(z)
and r''(z) and L'Hopital's rule. In the next two sections we will consider
in detail the convexity of ¢ for n = 2 and for n 2 3, respectively. We
will then use these results to obtain analytical expressions for bounds

on Pe in terms of the Nth moment of z and the distortion D.

B.2 Second Moment Error Bounds

In the previous section we noted that we could write an expression for
r'"(z) as either P(z)F(z) or P(z)[Fl(z) + Fz(z)]. Because of the form of
Fl(z) it is more expedient to use the latter expression for r'(z) for n = 2.

Hence for n = 2, we have that

ré(z) a P(z)Fz(z)

2zh \k
@ 2
= P@)2l g —Sr—ck,2, B). (B.18)
k=1 . o

Because kl(z) and kz(z) are both symmetric about z = 0, in applying the
isomorphism theorem to bound Pe’ we need only let I = [0,D], i.e., only
positive values of z need be considered in evaluating the convexity of C.

From (B.9) and (B.18), we see that for n = 2 and z 2 0, the sign of r''(z)




Yr'rvvr' v

N

"v—v‘-'xwvvvv'w
. s g

T—— T
. ; AN B A
, - :

- ——— Faa SRRt s Rl g 4

168

h . ; . .
is completely determined by C(k,2, o ), which is a monotonically decreasing

function of k with a maximum occurring at k = 1. Hence we note that

f h
| =0, 2.3, 7k

h u? 2k o

C(k,2, ;) = (- += [m] . (B.19)
g =z 0, o 2 Jg for some k < kl
where k1 is the smallest integer such that
2 2k

(-1) + b : (B.20)

[ ] 0.
c2 (k,+1) (k +2)

From (B.18) and (B.l19) we have the result that if 2 <./3,¢is
convex N for all values of z. For g 2,/3, using (B.18) and (B.20) we see
that for small values of z, € is convex U. For larger values of z, however,
and for k = kl, C is negative and hence r''(z) may be less than zero. From
(B.17) we see that, in fact, for large enough z and for % Z,JE, r''(z) is
negative. Consequently for 5-2 J@; C is initially convex U and then
becomes convex (.

In Figures Bl and B2 we have plotted { for g < /3 and g z Jg, respectively
for n = 2 and for arbitrary values of D. 1In plotting these two figures we
have used the results of the previous paragraph to determine the convexity of
€. 1In Figure B2 we have labeled four points on C to aid in determining the

moment space probability of error bounds. The point z. is defined to be the

1

point satisfying the equation
r"(zl) =0 . (B.21)

The point z, is the point on C such that a line drawn from the point

2

(kl(O),k (0)) is tangent to C at z i.e., 2z, is the solution to the

2’ 2

equation
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Figure Bl, Plot ofC for second moment space bounds (E <J3 ).
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ko(2) 4

k1(z)

Figure B2. Plot of C for second moment space bounds (% > V3 ).
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h+z h-z
1 2 2 _ h -
g{Q("—c ) + ) 2Q(U)}
-(h-zz)z (h+2,)?
2 2
- 1 {e 20 -e 2c } . (B.22)

4022v5;

The point z4 is defined to be the point on C such that a line drawn from

(kl(D),kz(D)) is tangent to C at z35 i.e., 23 is the solution to the equation

h+z h-z
1 h+D h-D 3 3
() + QD) - =) - (= 1=
2(D2-z§) g c o} o
] (h-z3)2 - (h+23)2
2 2
- 1 [e 20 -e 20 ). (B.23)

40'23Nﬁ5;

Finally point z, is the point on C which intersects with a line tangent

at (kl(O),kZ(O)), i.e., z, is the solution to the equation

h2
h+z h-2 h .
—IZ—{Q(-;—&) + Q3 %) -2Q()} = L. . (B.24)
2z4 ZGJEE c

In (B.24) we have used the fact that r'(0) is equal to the right-hand side
of (B.24), which follows from (B.4) and a simple application of L'Hopital's
rule for derivatives,

Note that all of the four points z. through z, are solutions to single

1
variable nonlinear equations. Hence they may be solved by any number of
methods including the bisection method, the false-position method, or Newton's

method. Once these points are determined, we may directly write down
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T

equations for the moment space lower and upper.béunds on the probability of
error through the use of the isomorphism theorem. In Tables Bl and B2 we
summarize these equations for lower and upper bounds, respectively. Note
that in general, these bounds are functions of h/o, D, and m, .

B.3 Nth Moment Error Bounds

We may easily extend the results for second moment error bounds to Nth
moment error bounds for n even and n = 2. However since Fl(z) is no longer
identically zero for n 2 2, we should not expect that the convexity of C be
identical to that of the n = 2 case. 1In the following we will show that this
is, in fact, the case.

For large values of z we will use the expression r'(z) = P(z)F(z) in
determining the convexity of C. From the observations made in the previous
section we need only consider z 2 Q0 in determining the convex regions of C.
From (B.l5) and (B.16) we may conclude that for large z, r'(z) is negativé
and hence & is convex N for large z. For smaller values of z we will use
the expression r''(z) = P(z)[Fl(z) + Fz(z)] to determine the convexity of C.
Since we are only considering non-negative values of z, from (B.9),

P(z) 2 0 and thus the sign of r'"(z) is determined by the sign of the sum
Fl(z) + Fz(z). For n > 2, Fl(z) is always negative and from (B.l4) we see
that at least the first 2n-4 terms of Fz(z) are negative. Thus for small
enough z and ?, the sum Fl(z) is negative and hence r'(z) is negative for
small values of z. For larger values of z and g it may be possible that
the k > 2n-~4 terms of Fz(z) will dominate the k £ 2n-4 terms of Fz(z) as
o1l as Fl(z) so that Fl(z) + Fz(z) > 0 for large values of z and %. We

inay conclude from this that, depending upon the value of g, C is either

- o L a PR Py - P - P S DN S I O N S S
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P SNR i " L D
E ' B 15D +okD) - 20dm, +ed) T el all
r. 2D i
: | h+J— h -
! £ 1Q¢ Ly + o )] all DS 2
| o 1
h +4/m, h -/m,
o= + QD] Jasz, |zsDsz,
h+z h+z
h 1r0AtD h-D, _ 3, 3
573 2[QC0) +Q50) - Q) - A
ml-z32 h+z3 h-z3
531+ R + )] 235Jm'_lsD z)SDSz,
D -z
3
Z[Q( ) + Q( ) - ZQC')]m + Q(‘) all D=z 2,
|2

o e —

Table Bl. Second moment lower bounds on Pe'
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8
Pe ml D
b h+JnT h-Jrq
e : 3[Q—) + Q( all all
|
Q&) + D) - 20&)1m; + o | anl DSz
i 2D 2 2
|
' 1 h+z, h-z,
Lta= + a—=>3 - 2ad)Im, + o) | Jajsz, | z,<p=:z
: 222
h 1
R N~ W
L re— + o—)] < Jo<p| D22z
: f2 = vo=D 4
Table B2.
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convex N for all values of z or & is initially convex (1, then convex U,
and finally convex (1 as z varies from zero to infinity,

In order to determine the critical value of g (SNRC) at which the
second case occurs, we will again ronsider the equation r''(z) = P(z)F(z).
Note that the second case results from the first case when the maximum

of F(z) is greater than zero. In equation form this condition is equivalent

to requiring that

dF (z_)
iz = 0 when F(zp) =0 (B.25)

where zp is the point at which the convexity of ¢ changes. From (B.10) we

have 22 h
dF(z_) 2
z
R - - 2h 22 - (n-1)a?)le © =
1z [h-+22p]-+[h 22p-+cz (zph zp (n-1)c )]e 0 (B.26)
and

2z h
2

- 2 2 _ 2 2 2 -
F(zp) [zph -+zp-+(n g7l + e [zph zp (n-1)o"] 0. (B.27)

2z _h
2
Solving for e 9 in (B.26) and (B.27) and equating the two results, we find

that zp is the solution to the quartic equation
22 + [(Zn-l)c2 - hz]zi + ca(n-l)(n-Z) =0 . (B.28)

Note that (B.28) is actually a quadratic equation in the variable zi and

hence has a solution given by

- a . 2 3 Bl PR S [T Y S G-y
- A PP s
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2 2 2 %
2 = 21 - D] £ (B - 1) D@D (5.29)
o) (o}

. . 2 .
In order for a solution to exist, zp must be real, i.e.

2
h—zz @n-1) + V(-1 (m-2) . (8.30)
o

Note that (B.30) is just the condition on g for C to be both convex N and

convex U. Alternatively, if we define SNRc as

Y
s\, 2 (@n-1) + /@D @2) 17, (B.31)

then € is convex N for all values of z if 5 < SNRC; otherwise € has both
convex [ and convex U regions.

In Figure B3 we have plotted C for various values of % and D. Using
these plots and the value of m = E{kl(z)}, we may easily write down equations
for lower and upper bounds on Pe and have done so in Tables B4 and BS,
respectively. Note that the error bounds are dependent upon the values of
the points z, through 25 depicted in Figure B3. The points 2z, and z, are the

2 4

solutions to the equation

r'"(z) = 0 (B.32)

for g 2 SNRC. The point 24 is the point on C such that a line drawn from
the point (kl(O),kz(O)) is tangent to C at Zqs i.e., 24 is the solution to

the equation

h+z h-z
L {q—2 —3) - 2@} = ¢
2—2—,3;m( T+ AU - Q) =z . (B.33)

-
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k,(z) ky(2)

h (SNR, or D=z,
o

2y, <D <24

kl(Z)

23
z7
kz(Z) 22 kz(z)

22<D SZB

kl(z)

kl(Z)

23 <D_<,Z}+

kl(Z)

Figure B3. Plot of C for Nth moment space bounds.
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2p"
g RAD) 4 QD 2oy ) (-] + o) all ps 2,
: 2p"
p h+z h-z m n ‘-
ezd rao - 201 v od | Jase,
27'3 z, <D<z
" 3 4
h'*'«/_ h '»\/l—n-l- n i
= FQ—) + Q)] zyS/m <D
. SNRZ SNR
t h+z h-2z m n
N G+ 20 =2+ Q) | =z _
k4 “
3
" s
o h+ h - n
- ’ 31Q¢ ) + Q¢ 1)] z3<,/5:5 z, 24<Ds z
h h+z h-z7 :«
3 D) + D) - =) - a1 :
o n
- n 2, <J;n_ls D
ml-D
Fs’ o Srae +%[Q( )+Q( 2]
& 20 -z )
;!
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. QD) + D) - 2oy —L
E‘.“ . 2D
-‘ H all D> z6
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o - i
T h f}:?l' h - f}nTl' a z
" 31Q¢ ) + Q )] Vo Sz,
. h+z h-z
- h+D h-D, _ 7, . 7
- Q) +Q5D) - ) - 5] ) z,SDSz
m,-D" 275“&71-51)
)+ B 4Dy
SNR> SNR_ 2(D -2y
n
h'*JF— h -/m, n
o= + a—)1 Ja sz
- " N h+z5 h-25 h+z h-z 1
‘ 2 [Q( ) +Q( ) - Q= )- n
’:- . “ =4 o z].(‘\/;l:s ZS
o n D> z5
Gf ml- h+z h-zl
N ‘[ 2]+ Qo) + Q=)
o 2(z5 z )
r-"."
~/— . :}_
- - h+ -,/m n
:.;'; 3 1Q( Ly + o L) zss@s D
... . .
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The point z, is defined to be the point on C such that the line drawn from

6
the point (kl(O),kz(O)) through the point (kl(z3),k2(23)) intersects ¢ at

26’ i.e., z, is the solution to the equation

6
h+z h-z
| - 6 SR -RP P |
r'(zy) = = (e + 5 -2 (B.34)
2z
6
The point z4 is the point on € such that a line drawn from (kl(D),k (D))
is tangent at z7, i.e., z7 is the solution to
h+z h-z
h+D - 7 7
o B2y 4 o&D) - oD - oD
r'(z7) = o o (B.35)
2[p" - z7]

Finally the points z, and z. are defined to be those points on C such

1 5
that a line drawn from z, on C to zg on C is tangent at both points and that
C does not intersect the connecting line, i.e., 2y and z5 are the solutions

to the equations

r'(zl) = r'(zs) (B.36)
and h+z1 h-z1 h+z5 h-z5
U5 + AU AU -e—=)
r'(zl) = = - . (B.37)
21 7 35

Because (B.32) through (B.35) are one variable nonlinear equations,
they may be solved using any of the methods listed in the previous section.
Equations (B.36) and (B.37) however are two variable nonlinear equatioms.
One method of solving this set of equations is to use a Fibonacci search

([Aaoki, 1971], [wWilde, 1964]) to search over zg while holding z. fixed,

1

where we are trying to minimize the quantity
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0 0 h+z1 h-zL h+z5 h-z5
d = [r'(2g)zg - T'(2)z] + FQUTT) +Q5 -G - Q7

)il . (B.38)

Further details on finding z; and z5 may be found in [Yan, 1975] for the

fourth moment case.
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